Dong Yang, Hu Honglu, Liang Ping, Xue Linlin, Chai Xiulin, Liu Fangming, Yu Meng, Cheng Fangyi
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.
Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.
Nat Rev Chem. 2025 Feb;9(2):102-117. doi: 10.1038/s41570-024-00670-7. Epub 2025 Jan 8.
Aqueous zinc-based batteries have garnered the attention of the electrochemical energy storage community, but they suffer from electrolytes freezing and sluggish kinetics in cold environments. In this Review, we discuss the key parameters necessary for designing anti-freezing aqueous zinc electrolytes. We start with the fundamentals related to different zinc salts and their dissolution and solvation behaviours, by highlighting the effects of anions and additives on salt solubility, ion diffusion and freezing points. We then focus on the complex structures and energetics of cation-anion-solvent interaction. We also evaluate the prevailing strategies to improve the performance of electrolytes at low temperatures, with a discussion on the kinetics of plating and stripping of zinc anodes and charge storage in various cathode materials. Furthermore, we consider the current challenges and envisage future research directions in cold-resistant aqueous electrolyte formulations for zinc batteries.
水系锌基电池已引起电化学储能领域的关注,但在寒冷环境中,它们存在电解质冻结和动力学迟缓的问题。在本综述中,我们讨论了设计抗冻水系锌电解质所需的关键参数。我们首先介绍与不同锌盐及其溶解和溶剂化行为相关的基本原理,重点强调阴离子和添加剂对盐溶解度、离子扩散和冰点的影响。然后,我们关注阳离子 - 阴离子 - 溶剂相互作用的复杂结构和能量学。我们还评估了提高电解质低温性能的主流策略,并讨论了锌阳极的电镀和剥离动力学以及各种阴极材料中的电荷存储。此外,我们考虑了当前面临的挑战,并展望了锌电池抗冻水系电解质配方未来的研究方向。