University of Kansas School of Medicine, Department of Microbiology, Molecular Genetics and Immunology, Kansas City, Kansas, USA.
University of Wisconsin-Madison, School of Pharmacy, Pharmaceutical Sciences Division, Madison, Wisconsin, USA.
J Bacteriol. 2023 Feb 22;205(2):e0046822. doi: 10.1128/jb.00468-22. Epub 2023 Jan 31.
To accelerate genetic studies on the Lyme disease pathogen Borrelia burgdorferi, we developed an enhanced CRISPR interference (CRISPRi) approach for isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible repression of specific B. burgdorferi genes. The entire system is encoded on a compact 11-kb shuttle vector plasmid that allows for inducible expression of both the sgRNA module and a nontoxic codon-optimized dCas9 protein. We validated this CRISPRi system by targeting the genes encoding OspA and OspB, abundant surface lipoproteins coexpressed by a single operon, and FlaB, the major subunit forming the periplasmic flagella. As in other systems, single guide RNAs (sgRNAs) complementary to the nontemplate strand were consistently effective in gene repression, with 4- to 994-fold reductions in targeted transcript levels and concomitant reductions of protein levels. Furthermore, we showed that knockdowns could be selectively complemented in for OspA expression via the insertion of CRISPRi-resistant, synonymously or nonsynonymously mutated protospacer adjacent motif (PAM*) alleles into a unique site within the CRISPRi plasmid. Together, this establishes CRISPRi PAM* as a robust new genetic tool to simplify the study of B. burgdorferi genes, bypassing the need for gene disruptions by allelic exchange and avoiding rare codon toxicity from the heterologous expression of dCas9. Borrelia burgdorferi, the spirochetal bacterium causing Lyme disease, is a tick-borne pathogen of global importance. Here, we expand the genetic toolbox for studying B. burgdorferi physiology and pathogenesis by establishing a single plasmid-based, fully inducible, and nontoxic CRISPR interference (CRISPRi) system for transcriptional silencing of B. burgdorferi genes and operons. We also show that alleles of CRISPRi-targeted genes with mutated protospacer-adjacent motif (PAM*) sites are CRISPRi resistant and can be used for simultaneous in gene complementation. The CRISPRi PAM* system will streamline the study of essential proteins and accelerate investigations into their structure-function relationships.
为了加速莱姆病病原体伯氏疏螺旋体的基因研究,我们开发了一种增强型 CRISPR 干扰 (CRISPRi) 方法,用于异丙基-β-D-硫代半乳糖吡喃糖苷 (IPTG) 诱导特定伯氏疏螺旋体基因的抑制。整个系统编码在一个紧凑的 11kb 穿梭质粒上,允许 sgRNA 模块和非毒性密码子优化的 dCas9 蛋白的诱导表达。我们通过靶向编码 OspA 和 OspB 的基因来验证这个 CRISPRi 系统,OspA 和 OspB 是由单个操纵子共表达的丰富表面脂蛋白,以及 FlaB,它是形成周质鞭毛的主要亚基。与其他系统一样,与非模板链互补的单指导 RNA (sgRNA) 始终有效地抑制基因表达,靶转录物水平降低 4 到 994 倍,同时降低蛋白质水平。此外,我们表明,通过将 CRISPRi 抗性、同义或非同义突变的原间隔基序 (PAM*) 等位基因插入 CRISPRi 质粒中的独特位点,可选择性地互补 在 中 OspA 的表达。总的来说,这确立了 CRISPRi PAM作为一种强大的新遗传工具,可以简化伯氏疏螺旋体基因的研究,绕过通过等位基因交换进行基因破坏的需要,并避免 dCas9 异源表达带来的罕见密码子毒性。伯氏疏螺旋体是引起莱姆病的螺旋体细菌,是一种具有全球重要性的蜱传病原体。在这里,我们通过建立一个基于质粒的、完全诱导的、非毒性的 CRISPR 干扰 (CRISPRi) 系统,用于伯氏疏螺旋体基因和操纵子的转录沉默,扩展了研究伯氏疏螺旋体生理学和发病机制的遗传工具包。我们还表明,具有突变的原间隔基序 (PAM) 位点的 CRISPRi 靶向基因的等位基因对 CRISPRi 具有抗性,并且可以用于同时在 中进行基因互补。CRISPRi PAM*系统将简化对必需的伯氏疏螺旋体蛋白的研究,并加速对其结构-功能关系的研究。