Suppr超能文献

一种自动计算噪声、空间分辨率和对比质量度量的新算法:概念验证以及与腹部 CT 体模和临床图像主观评分的一致性。

A New Algorithm for Automatically Calculating Noise, Spatial Resolution, and Contrast Image Quality Metrics: Proof-of-Concept and Agreement With Subjective Scores in Phantom and Clinical Abdominal CT.

机构信息

From the Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht.

Department of Radiology, Máxima Medical Centre, Veldhoven, the Netherlands.

出版信息

Invest Radiol. 2023 Sep 1;58(9):649-655. doi: 10.1097/RLI.0000000000000954.

Abstract

OBJECTIVES

The aims of this study were to develop a proof-of-concept computer algorithm to automatically determine noise, spatial resolution, and contrast-related image quality (IQ) metrics in abdominal portal venous phase computed tomography (CT) imaging and to assess agreement between resulting objective IQ metrics and subjective radiologist IQ ratings.

MATERIALS AND METHODS

An algorithm was developed to calculate noise, spatial resolution, and contrast IQ parameters. The algorithm was subsequently used on 2 datasets of anthropomorphic phantom CT scans, acquired on 2 different scanners (n = 57 each), and on 1 dataset of patient abdominal CT scans (n = 510). These datasets include a range of high to low IQ: in the phantom dataset, this was achieved through varying scanner settings (tube voltage, tube current, reconstruction algorithm); in the patient dataset, lower IQ images were obtained by reconstructing 30 consecutive portal venous phase scans as if they had been acquired at lower mAs. Five noise, 1 spatial, and 13 contrast parameters were computed for the phantom datasets; for the patient dataset, 5 noise, 1 spatial, and 18 contrast parameters were computed. Subjective IQ rating was done using a 5-point Likert scale: 2 radiologists rated a single phantom dataset each, and another 2 radiologists rated the patient dataset in consensus. General agreement between IQ metrics and subjective IQ scores was assessed using Pearson correlation analysis. Likert scores were grouped into 2 categories, "insufficient" (scores 1-2) and "sufficient" (scores 3-5), and differences in computed IQ metrics between these categories were assessed using the Mann-Whitney U test.

RESULTS

The algorithm was able to automatically calculate all IQ metrics for 100% of the included scans. Significant correlations with subjective radiologist ratings were found for 4 of 5 noise ( R2 range = 0.55-0.70), 1 of 1 spatial resolution ( R2 = 0.21 and 0.26), and 10 of 13 contrast ( R2 range = 0.11-0.73) parameters in the phantom datasets and for 4 of 5 noise ( R2 range = 0.019-0.096), 1 of 1 spatial resolution ( R2 = 0.11), and 16 of 18 contrast ( R2 range = 0.008-0.116) parameters in the patient dataset. Computed metrics that significantly differed between "insufficient" and "sufficient" categories were 4 of 5 noise, 1 of 1 spatial resolution, 9 and 10 of 13 contrast parameters for phantom the datasets and 3 of 5 noise, 1 of 1 spatial resolution, and 10 of 18 contrast parameters for the patient dataset.

CONCLUSION

The developed algorithm was able to successfully calculate objective noise, spatial resolution, and contrast IQ metrics of both phantom and clinical abdominal CT scans. Furthermore, multiple calculated IQ metrics of all 3 categories were in agreement with subjective radiologist IQ ratings and significantly differed between "insufficient" and "sufficient" IQ scans. These results demonstrate the feasibility and potential of algorithm-determined objective IQ. Such an algorithm should be applicable to any scan and may help in optimization and quality control through automatic IQ assessment in daily clinical practice.

摘要

目的

本研究旨在开发一种概念验证计算机算法,自动确定腹部门静脉期 CT 成像的噪声、空间分辨率和对比度相关的图像质量 (IQ) 指标,并评估由此产生的客观 IQ 指标与主观放射科医师 IQ 评分之间的一致性。

材料和方法

开发了一种算法来计算噪声、空间分辨率和对比度 IQ 参数。随后,该算法被用于两个体模 CT 扫描数据集,分别在两台不同的扫描仪上采集(每组 57 例),以及一个患者腹部 CT 扫描数据集(共 510 例)。这些数据集包含一系列高到低的 IQ:在体模数据集中,通过改变扫描仪设置(管电压、管电流、重建算法)来实现;在患者数据集,通过将 30 次连续门静脉期扫描重建为更低 mAs 来获得更低的 IQ 图像。对于体模数据集,计算了 5 个噪声、1 个空间分辨率和 13 个对比度参数;对于患者数据集,计算了 5 个噪声、1 个空间分辨率和 18 个对比度参数。使用 5 分李克特量表进行主观 IQ 评分:2 位放射科医师分别对单个体模数据集进行评分,另外 2 位放射科医师进行共识评分。使用 Pearson 相关分析评估 IQ 指标与主观 IQ 评分之间的总体一致性。将 Likert 评分分为“不足”(评分 1-2)和“充分”(评分 3-5)两类,并使用 Mann-Whitney U 检验评估这些类别之间计算的 IQ 指标的差异。

结果

该算法能够自动计算 100%纳入扫描的所有 IQ 指标。在体模数据集和患者数据集,4 个噪声( R2 范围为 0.55-0.70)、1 个空间分辨率( R2 = 0.21 和 0.26)和 10 个对比度( R2 范围为 0.11-0.73)参数与主观放射科医师评分之间存在显著相关性,而在体模数据集和患者数据集,5 个噪声( R2 范围为 0.019-0.096)、1 个空间分辨率( R2 = 0.11)和 16 个对比度( R2 范围为 0.008-0.116)参数与主观放射科医师评分之间存在显著相关性。在体模数据集和患者数据集,4 个噪声、1 个空间分辨率、9 个和 10 个对比度参数之间存在显著差异,而在体模数据集和患者数据集,3 个噪声、1 个空间分辨率和 10 个对比度参数之间存在显著差异。

结论

所开发的算法能够成功计算体模和临床腹部 CT 扫描的客观噪声、空间分辨率和对比度 IQ 指标。此外,所有 3 类别的多个计算 IQ 指标与主观放射科医师 IQ 评分一致,并且在“不足”和“充分” IQ 扫描之间存在显著差异。这些结果证明了算法确定的客观 IQ 的可行性和潜力。这种算法应该适用于任何扫描,并且可以通过在日常临床实践中自动 IQ 评估来帮助优化和质量控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验