Technische Universität Berlin, Department of Chemistry: Metalorganics and Inorganic Materials, Sekr. C2, Strasse des 17. Juni 135, 10623 Berlin, Germany.
Acc Chem Res. 2023 Feb 21;56(4):475-488. doi: 10.1021/acs.accounts.2c00763. Epub 2023 Jan 31.
ConspectusSilylenes are divalent silicon species with an unoccupied 3p orbital and one lone pair of electrons at the Si center. Owing to the excellent σ-donating ability of amidinato-based silylenes, which stems from the intramolecular imino- donor interaction with the vacant 3p orbital of the silicon atom, N-heterocyclic amidinato bis(silylenes) [bis(NHSi)s] can serve as versatile strong donating ligands for cooperative stabilization of central atoms in unusually low oxidation states. Herein, we present our recent achievement on the application of bis(NHSi) ligands with electronically and spatially different spacers to main-group chemistry, which has allowed the isolation of a variety of low-valent compounds consisting of monatomic zero-valent group 14 E complexes (named "metallylones", E = Si, Ge, Sn, Pb); monovalent group 15 E complexes (E = N, P, isoelectronic with metallylones); and diatomic low-valent E complexes (E = Si, Ge, P) with intriguing electronic structures and chemical reactivities.The role of the Si···Si distance was revealed to be crucial in this chemistry. Utilizing the pyridine-based bis(NHSi) (Si···Si distance: 7.8 Å) ligand, germanium(0) complexes with additional Fe(CO) protection at the Ge site have been isolated. Featuring a shorter Si···Si distance of 4.3 Å, the xanthene-based bis(NHSi) has allowed the realization of the full series of heavy zero-valent group 14 element E complexes (E = Si, Ge, Sn, Pb), while the -carborane-based bis(NHSi) (Si···Si distance: 3.3 Å) has enabled the isolation of Si and Ge complexes. Remarkably, reduction of the -carborane-based bis(NHSi)-supported Si and Ge complexes induces the movement of two electrons into the -carborane core and provides access to Si-Si and Ge-Ge species as oxidation products. Additionally, the -carborane-based bis(NHSi) reacts with adamantyl azide, leading to a series of nitrogen(I) complexes as isoelectronic species of a carbone (C complex). Moreover, cooperative activation of white phosphorus gives bis(NHSi)-supported phosphorus complexes with varying and unexpected electronic structures when employing the xanthene-, -carborane-, and aniline-based bis(NHSi)s. With the better kinetic protection provided by the xanthene-based bis(NHSi), small-molecule activation and functionalization of the bis(NHSi)-supported central E or E atoms (E = Si, Ge, P) are possible and furnish several novel functionalized silicon, germanium, and phosphorus compounds.With knowledge of the ability of chelating bis(NHSi)s in coordinating and functionalizing low-valent group 14 and 15 elements, the application of these ligand systems to other main-group elements such as group 2 and 13 is quite promising. To fully understand the role of the NHSi in a bis(NHSi) ligand, introducing a mixed ligand, i.e., the combination of an NHSi with other functional groups, such as Lewis acidic borane or Lewis basic borylene, in one chelating ligand could lead to new types of low-valent main-group species. Furthermore, the development of a genuine acyclic silylene, without an imino- interaction with the vacant 3p orbital at the silicon(II) atom, as part of a chelating bis(acyclic silylene) has the potential to form very electronically different main-group element complexes that could achieve even more challenging bond activations such as N or unactivated C-H bonds.
硅烯是一种具有未占据的 3p 轨道和硅中心一个孤对电子的二价硅物种。由于酰胺基硅烯具有出色的σ-供电子能力,这源于分子内亚氨基供体与硅原子的空 3p 轨道的相互作用,N-杂环酰胺基双(硅烯)[双(NHSi)]可以作为中心原子在异常低氧化态下协同稳定的多功能强供电子配体。在此,我们介绍了我们最近在酰胺基双(硅烯)配体在主族化学中的应用成果,这使得可以分离出各种由单原子零价第 14 族 E 配合物(命名为“金属酮”,E = Si、Ge、Sn、Pb)组成的低价化合物;单价第 15 族 E 配合物(E = N、P,与金属酮等电子);以及具有有趣电子结构和化学反应性的二原子低价 E 配合物(E = Si、Ge、P)。硅烯中的 Si···Si 距离在这一化学中起着至关重要的作用。利用基于吡啶的双(NHSi)(Si···Si 距离:7.8 Å)配体,已经分离出了在 Ge 位具有额外 Fe(CO)保护的锗(0)配合物。具有较短的 Si···Si 距离(4.3 Å)的基于芴的双(NHSi)允许实现完整的一系列重零价第 14 族元素 E 配合物(E = Si、Ge、Sn、Pb),而基于 -卡硼烷的双(NHSi)(Si···Si 距离:3.3 Å)则允许分离出 Si 和 Ge 配合物。值得注意的是,基于 -卡硼烷的双(NHSi)-支持的 Si 和 Ge 配合物的还原将两个电子移入 -卡硼烷核心,并提供了作为氧化产物的 Si-Si 和 Ge-Ge 物种的途径。此外,基于 -卡硼烷的双(NHSi)与金刚烷基叠氮化物反应,导致一系列氮(I)配合物作为碳(C 配合物)的等电子体。此外,当使用芴基、-卡硼烷基和苯胺基双(NHSi)时,磷的协同活化会产生具有不同和意外电子结构的双(NHSi)支持的磷配合物。由于芴基双(NHSi)提供了更好的动力学保护,因此可以对双(NHSi)支持的中心 E 或 E 原子(E = Si、Ge、P)进行小分子活化和功能化,并提供几种新型的功能化硅、锗和磷化合物。有了配位和功能化低价第 14 和 15 族元素的双(NHSi)螯合能力的知识,将这些配体系统应用于其他主族元素,如第 2 和第 13 族,是非常有前途的。为了充分了解 NHSi 在双(NHSi)配体中的作用,引入混合配体,即 NHSi 与其他功能基团(如路易斯酸性硼烷或路易斯碱性硼烯)的组合,在一个螯合配体中,可以导致形成新型的低价主族物种。此外,开发真正的无环硅烯,而不是与硅(II)原子的空 3p 轨道具有亚氨基相互作用,作为螯合双(无环硅烯)的一部分,有可能形成非常电子不同的主族元素配合物,这些配合物可以实现更具挑战性的键活化,例如 N 或未激活的 C-H 键。