Suppr超能文献

基于多个工具变量的孟德尔随机化研究中平均因果效应的界:应用于产前酒精暴露与注意缺陷多动障碍。

Bounding the average causal effect in Mendelian randomisation studies with multiple proposed instruments: An application to prenatal alcohol exposure and attention deficit hyperactivity disorder.

机构信息

Department of Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, the Netherlands.

CAUSALab, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.

出版信息

Paediatr Perinat Epidemiol. 2023 May;37(4):326-337. doi: 10.1111/ppe.12951. Epub 2023 Feb 1.

Abstract

BACKGROUND

As large-scale observational data become more available, caution regarding causal assumptions remains critically important. This may be especially true for Mendelian randomisation (MR), an increasingly popular approach. Point estimation in MR usually requires strong, often implausible homogeneity assumptions beyond the core instrumental conditions. Bounding, which does not require homogeneity assumptions, is infrequently applied in MR.

OBJECTIVES

We aimed to demonstrate computing nonparametric bounds for the causal risk difference derived from multiple proposed instruments in an MR study where effect heterogeneity is expected.

METHODS

Using data from the Norwegian Mother, Father and Child Cohort Study (n = 2056) and Avon Longitudinal Study of Parents and Children (n = 6216) to study the average causal effect of maternal pregnancy alcohol use on offspring attention deficit hyperactivity disorder symptoms, we proposed 11 maternal SNPs as instruments. We computed bounds assuming subsets of SNPs were jointly valid instruments, for all combinations of SNPs where the MR model was not falsified.

RESULTS

The MR assumptions were violated for all sets with more than 4 SNPs in one cohort and for all sets with more than 2 SNPs in the other. Bounds assuming one SNP was an individually valid instrument barely improved on assumption-free bounds. Bounds tightened as more SNPs were assumed to be jointly valid instruments, and occasionally identified directions of effect, though bounds from different sets varied.

CONCLUSIONS

Our results suggest that, when proposing multiple instruments, bounds can contextualise plausible magnitudes and directions of effects. Computing bounds over multiple assumption sets, particularly in large, high-dimensional data, offers a means of triangulating results across different potential sources of bias within a study and may help researchers to better evaluate and emphasise which estimates are compatible with the most plausible assumptions for their specific setting.

摘要

背景

随着大规模观察性数据的可用性不断提高,对于因果假设的谨慎仍然至关重要。对于孟德尔随机化(MR)这种越来越受欢迎的方法尤其如此。MR 中的点估计通常需要超出核心工具条件的强大且通常不太可信的同质性假设。而不需要同质性假设的边界法在 MR 中很少应用。

目的

我们旨在展示在预期存在效应异质性的 MR 研究中,如何针对从多个提出的工具中得出的因果风险差异进行非参数边界估计计算。

方法

使用挪威母亲、父亲和儿童队列研究(n=2056)和雅芳纵向父母与子女研究(n=6216)的数据,研究母亲妊娠期间饮酒对子女注意力缺陷多动障碍症状的平均因果效应,我们提出了 11 个母亲 SNPs 作为工具。我们假设部分 SNP 是联合有效的工具,计算了在不违反 MR 模型的情况下所有 SNP 组合的边界。

结果

在一个队列中,超过 4 个 SNP 的所有集合和另一个队列中超过 2 个 SNP 的所有集合中,MR 假设都被违反了。假设一个 SNP 是个体有效的工具的边界几乎没有改善无假设的边界。随着更多 SNP 被假设为联合有效的工具,边界会收紧,并且偶尔会确定效应的方向,尽管来自不同集合的边界会有所不同。

结论

我们的结果表明,在提出多个工具时,边界可以将效应的合理幅度和方向进行上下文化。对多个假设集合进行边界计算,特别是在大型、高维数据中,可以提供一种在研究中不同潜在偏倚源之间进行结果三角测量的方法,并帮助研究人员更好地评估和强调哪些估计与他们特定环境中最合理的假设是兼容的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63e7/10946905/8273d491ea91/PPE-37-326-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验