Rayka Milad, Firouzi Rohoullah
Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran.
Mol Inform. 2023 Mar;42(3):e2200135. doi: 10.1002/minf.202200135. Epub 2023 Feb 1.
In recent years, thanks to advances in computer hardware and dataset availability, data-driven approaches (like machine learning) have become one of the essential parts of the drug design framework to accelerate drug discovery procedures. Constructing a new scoring function, a function that can predict the binding score for a generated protein-ligand pose during docking procedure or a crystal complex, based on machine and deep learning has become an active research area in computer-aided drug design. GB-Score is a state-of-the-art machine learning-based scoring function that utilizes distance-weighted interatomic contact features, PDBbind-v2019 general set, and Gradient Boosting Trees algorithm to the binding affinity prediction. The distance-weighted interatomic contact featurization method used the distance between different ligand and protein atom types for numerical representation of the protein-ligand complex. GB-Score attains Pearson's correlation 0.862 and RMSE 1.190 on the CASF-2016 benchmark test in the scoring power metric. GB-Score's codes are freely available on the web at https://github.com/miladrayka/GB_Score.
近年来,由于计算机硬件的进步和数据集的可得性,数据驱动方法(如机器学习)已成为药物设计框架中加速药物发现过程的重要组成部分。基于机器学习和深度学习构建一种新的评分函数,即一种能够在对接过程或晶体复合物中预测生成的蛋白质-配体构象的结合分数的函数,已成为计算机辅助药物设计中的一个活跃研究领域。GB-Score是一种基于机器学习的先进评分函数,它利用距离加权原子间接触特征、PDBbind-v2019通用集和梯度提升树算法进行结合亲和力预测。距离加权原子间接触特征化方法使用不同配体和蛋白质原子类型之间的距离来对蛋白质-配体复合物进行数值表示。在评分能力指标方面,GB-Score在CASF-2016基准测试中获得了皮尔逊相关系数0.862和均方根误差1.190。GB-Score的代码可在https://github.com/miladrayka/GB_Score上免费获取。