Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany.
Faculty of Physics, Babeş-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania.
ACS Nano. 2023 Feb 14;17(3):3119-3127. doi: 10.1021/acsnano.2c12116. Epub 2023 Feb 1.
Plasmonic nanoparticles can drive chemical reactions powered by sunlight. These processes involve the excitation of surface plasmon resonances (SPR) and the subsequent charge transfer to adsorbed molecular orbitals. Nonetheless, controlling the flow of energy and charge from SPR to adsorbed molecules is still difficult to predict or tune. Here, we show the crucial role of halide ions in modifying the energy landscape of a plasmon-driven chemical reaction by carefully engineering the nanoparticle-molecule interface. By doing so, the selectivity of plasmon-driven chemical reactions can be controlled, either enhancing or inhibiting the metal-molecule charge and energy transfer or by regulating the vibrational pumping rate. These results provide an elegant method for controlling the energy flow from plasmonic nanoparticles to adsorbed molecules, , and selectively targeting chemical bonds by changing the chemical nature of the metal-molecule interface.
等离子体纳米粒子可以驱动由阳光提供动力的化学反应。这些过程涉及表面等离子体共振(SPR)的激发以及随后向吸附的分子轨道的电荷转移。尽管如此,控制来自 SPR 到吸附分子的能量和电荷的流动仍然难以预测或调节。在这里,我们通过仔细设计纳米粒子-分子界面,展示了卤化物离子在修饰由等离子体驱动的化学反应的能量景观方面的关键作用。通过这样做,可以控制等离子体驱动的化学反应的选择性,无论是增强还是抑制金属-分子的电荷和能量转移,或者通过调节振动泵浦速率。这些结果为通过改变金属-分子界面的化学性质来控制从等离子体纳米粒子到吸附分子的能量流动并选择性地靶向化学键提供了一种优雅的方法。