Ann Am Thorac Soc. 2023 Feb;20(2):161-195. doi: 10.1513/AnnalsATS.202211-915ST.
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
多种胸部影像学方法已经被开发出来,用于在肺部疾病的诊断和监测中将结构与功能联系起来。容积计算机断层扫描(CT)呈现了肺部结构的三维图谱,并且可以与正电子发射断层扫描(PET)结合使用以获得动态生理数据。使用超短回波时间(UTE)序列的磁共振成像(MRI)提高了来自肺实质的信号检测;对比剂用于推断气道功能、通气-灌注-扩散和力学。质子 MRI 可以测量区域通气-灌注比。定量成像(QI)衍生的终点已被开发出来以识别结构-功能表型,包括气-血-组织容积分割、支气管血管重塑、肺气肿、纤维化和指示结构改变的纹理模式。在不同肺容量下获得的配对图像上的配准标记用于推断气道口径、空气潴留、气体和血液输送、顺应性和变形。本文总结了 QI 研究设计和分析中基本的“良好实践”体视学原则;评估了常见成像方式的技术能力和局限性;并评估了主要的 QI 终点,包括潜在的假设和局限性、检测和分层异质、重叠的病理生理学的能力,以及与功能指标相关和互补的疾病进展和治疗反应监测。目标是促进对成像数据的无偏量化和解释,比较使用不同 QI 方式获得的指标,以确保准确和可重复的指标推导,并避免对推断的生理过程的错误表示。强调了基于成像的计算建模在推进这些目标中的作用。本文概述的基本原则对于所有形式的 QI 都是至关重要的,无论采集方式或疾病实体如何。