Suppr超能文献

基于影像组学的脑膜瘤研究:系统综述。

Application of radiomics to meningiomas: A systematic review.

机构信息

Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Neuro Oncol. 2023 Jun 2;25(6):1166-1176. doi: 10.1093/neuonc/noad028.

Abstract

BACKGROUND

Quantitative imaging analysis through radiomics is a powerful technology to non-invasively assess molecular correlates and guide clinical decision-making. There has been growing interest in image-based phenotyping for meningiomas given the complexities in management.

METHODS

We systematically reviewed meningioma radiomics analyses published in PubMed, Embase, and Web of Science until December 20, 2021. We compiled performance data and assessed publication quality using the radiomics quality score (RQS).

RESULTS

A total of 170 publications were grouped into 5 categories of radiomics applications to meningiomas: Tumor detection and segmentation (21%), classification across neurologic diseases (54%), grading (14%), feature correlation (3%), and prognostication (8%). A majority focused on technical model development (73%) versus clinical applications (27%), with increasing adoption of deep learning. Studies utilized either private institutional (50%) or public (49%) datasets, with only 68% using a validation dataset. For detection and segmentation, radiomic models had a mean accuracy of 93.1 ± 8.1% and a dice coefficient of 88.8 ± 7.9%. Meningioma classification had a mean accuracy of 95.2 ± 4.0%. Tumor grading had a mean area-under-the-curve (AUC) of 0.85 ± 0.08. Correlation with meningioma biological features had a mean AUC of 0.89 ± 0.07. Prognostication of the clinical course had a mean AUC of 0.83 ± 0.08. While clinical studies had a higher mean RQS compared to technical studies, quality was low overall with a mean RQS of 6.7 ± 5.9 (possible range -8 to 36).

CONCLUSIONS

There has been global growth in meningioma radiomics, driven by data accessibility and novel computational methodology. Translatability toward complex tasks such as prognostication requires studies that improve quality, develop comprehensive patient datasets, and engage in prospective trials.

摘要

背景

通过放射组学进行定量成像分析是一种强大的技术,可以非侵入性地评估分子相关性并指导临床决策。鉴于脑膜瘤管理的复杂性,基于图像的表型分析越来越受到关注。

方法

我们系统地检索了截至 2021 年 12 月 20 日在 PubMed、Embase 和 Web of Science 上发表的脑膜瘤放射组学分析研究。我们汇总了性能数据,并使用放射组学质量评分(RQS)评估了出版物的质量。

结果

共有 170 篇文献分为五类用于脑膜瘤的放射组学应用:肿瘤检测和分割(21%)、神经疾病分类(54%)、分级(14%)、特征相关性(3%)和预后(8%)。大多数研究侧重于技术模型的开发(73%)而非临床应用(27%),并且越来越多地采用深度学习。研究使用的是私人机构(50%)或公共数据集(49%),只有 68%的研究使用了验证数据集。在检测和分割方面,放射组学模型的准确率为 93.1%±8.1%,骰子系数为 88.8%±7.9%。脑膜瘤分类的准确率为 95.2%±4.0%。肿瘤分级的 AUC 为 0.85±0.08。与脑膜瘤生物学特征的相关性 AUC 为 0.89±0.07。对临床病程的预后预测 AUC 为 0.83±0.08。虽然临床研究的平均 RQS 高于技术研究,但总体质量较低,平均 RQS 为 6.7±5.9(可能范围为-8 至 36)。

结论

由于数据的可及性和新的计算方法,脑膜瘤放射组学在全球范围内得到了发展。要实现预测等复杂任务的转化,需要开展提高质量、开发全面患者数据集以及参与前瞻性试验的研究。

相似文献

引用本文的文献

7
9
Meningioma recurrence: Time for an online prediction tool?脑膜瘤复发:是时候推出在线预测工具了吗?
Surg Neurol Int. 2024 May 10;15:155. doi: 10.25259/SNI_43_2024. eCollection 2024.

本文引用的文献

5
A molecularly integrated grade for meningioma.一种脑膜瘤的分子整合分级。
Neuro Oncol. 2022 May 4;24(5):796-808. doi: 10.1093/neuonc/noab213.
8
Medical imaging and nuclear medicine: a Lancet Oncology Commission.医学影像学与核医学:柳叶刀肿瘤学委员会报告
Lancet Oncol. 2021 Apr;22(4):e136-e172. doi: 10.1016/S1470-2045(20)30751-8. Epub 2021 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验