Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
Brief Funct Genomics. 2023 May 18;22(3):291-301. doi: 10.1093/bfgp/elac053.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in December 2019. As of mid-2021, the delta variant was the primary type; however, in January 2022, the omicron (BA.1) variant rapidly spread and became the dominant type in the United States. In June 2022, its subvariants surpassed previous variants in different temporal and spatial situations. To investigate the high transmissibility of omicron variants, we assessed the complex of spike protein 1 receptor-binding domain (S1RBD) and human angiotensin-converting enzyme 2 (hACE2) from the Protein Data Bank (6m0j, 7a91, 7mjn, 7v80, 7v84, 7v8b, 7wbl and 7xo9) and directly mutated specific amino acids to simulate several variants, including variants of concern (alpha, beta, gamma, delta), variants of interest (delta plus, epsilon, lambda, mu, mu without R346K) and omicron variants (BA.1, BA.2, BA.2.12.1, BA.4, BA.5). Molecular dynamics (MD) simulations for 100 ns under physiological conditions were then performed. We found that the omicron S1RBD-hACE2 complexes become more compact with increases in hydrogen-bond interactions at the interface, which is related to the transmissibility of SARS-CoV-2. Moreover, the relaxation time of hydrogen bonds is relatively short among the omicron variants, which implies that the interface conformation alterations are fast. From the molecular perspective, PHE486 and TYR501 in omicron S1RBDs need to involve hydrogen bonds and hydrophobic interactions on the interface. Our study provides structural features of the dominant variants that explain the evolution trend and their increased contagiousness and could thus also shed light on future variant changes.
严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)于 2019 年 12 月首次被发现。截至 2021 年年中,德尔塔变体是主要类型;然而,在 2022 年 1 月,奥密克戎(BA.1)变体迅速传播,并成为美国的主要类型。2022 年 6 月,其亚变体在不同的时间和空间情况下超过了以前的变体。为了研究奥密克戎变体的高传染性,我们评估了来自蛋白质数据库(6m0j、7a91、7mjn、7v80、7v84、7v8b、7wbl 和 7xo9)的刺突蛋白 1 受体结合域(S1RBD)和人血管紧张素转换酶 2(hACE2)复合物,并直接突变特定的氨基酸来模拟几种变体,包括关注变体(alpha、beta、gamma、delta)、感兴趣变体(delta plus、epsilon、lambda、mu、mu without R346K)和奥密克戎变体(BA.1、BA.2、BA.2.12.1、BA.4、BA.5)。然后在生理条件下进行了 100ns 的分子动力学(MD)模拟。我们发现,奥密克戎 S1RBD-hACE2 复合物变得更加紧凑,界面处的氢键相互作用增加,这与 SARS-CoV-2 的传染性有关。此外,奥密克戎变体之间氢键的弛豫时间相对较短,这意味着界面构象的变化很快。从分子角度来看,奥密克戎 S1RBD 中的 PHE486 和 TYR501 需要在界面上涉及氢键和疏水相互作用。我们的研究提供了优势变体的结构特征,解释了其进化趋势及其传染性增加的原因,也为未来的变体变化提供了启示。