Suppr超能文献

根据计算机研究表明,棘突 RBD 增加的淀粉样变性和对 ACE2 的 pH 依赖性结合可能导致 SARS-CoV-2 奥密克戎的传染性和致病性。

The Increased Amyloidogenicity of Spike RBD and pH-Dependent Binding to ACE2 May Contribute to the Transmissibility and Pathogenic Properties of SARS-CoV-2 Omicron as Suggested by In Silico Study.

机构信息

Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.

Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia.

出版信息

Int J Mol Sci. 2022 Nov 4;23(21):13502. doi: 10.3390/ijms232113502.

Abstract

SARS-CoV-2 is a rapidly evolving pathogen that has caused a global pandemic characterized by several consecutive waves. Based on epidemiological and NGS data, many different variants of SARS-CoV-2 were described and characterized since the original variant emerged in Wuhan in 2019. Notably, SARS-CoV-2 variants differ in transmissibility and pathogenicity in the human population, although the molecular basis for this difference is still debatable. A significant role is attributed to amino acid changes in the binding surface of the Spike protein to the ACE2 receptor, which may facilitate virus entry into the cell or contribute to immune evasion. We modeled in silico the interaction between Spike RBDs of Wuhan-Hu-1, Delta, and Omicron BA.1 variants and ACE2 at different pHs (pH 5 and pH 7) and showed that the strength of this interaction was higher for the Omicron BA.1 RBD compared to Wuhan-Hu-1 or Delta RBDs and that the effect was more profound at pH 5. This finding is strikingly related to the increased ability of Omicron variants to spread in the population. We also noted that during its spread in the population, SARS-CoV-2 evolved to a more charged, basic composition. We hypothesize that the more basic surface of the Omicron variant may facilitate its spread in the upper respiratory tract but not in the lower respiratory tract, where pH estimates are different. We calculated the amyloidogenic properties of Spike RBDs in different SARS-CoV-2 variants and found eight amyloidogenic regions in the Spike RBDs for each of the variants predicted by the FoldAmyloid program. Although all eight regions were almost identical in the Wuhan to Gamma variants, two of them were significantly longer in both Omicron variants, making the Omicron RBD more amyloidogenic. We discuss how the increased predicted amyloidogenicity of the Omicron variants RBDs may be important for protein stability, influence its interaction with ACE2 and contribute to immune evasion.

摘要

SARS-CoV-2 是一种快速进化的病原体,导致了以几波连续波为特征的全球大流行。基于流行病学和 NGS 数据,自 2019 年武汉原始变异株出现以来,已经描述和表征了许多不同的 SARS-CoV-2 变异株。值得注意的是,SARS-CoV-2 变异株在人群中的传染性和致病性不同,尽管这种差异的分子基础仍有争议。 Spike 蛋白与 ACE2 受体结合表面的氨基酸变化在病毒进入细胞或有助于免疫逃避方面起着重要作用。我们在不同 pH 值(pH5 和 pH7)下对武汉-Hu-1、Delta 和 Omicron BA.1 变体的 Spike RBD 与 ACE2 之间的相互作用进行了计算机模拟,结果表明,Omicron BA.1 RBD 与武汉-Hu-1 或 Delta RBD 相比,这种相互作用的强度更高,并且在 pH5 时效果更为明显。这一发现与 Omicron 变体在人群中传播能力增强有显著关系。我们还注意到,在其在人群中的传播过程中,SARS-CoV-2 进化为更带电荷、更碱性的组成。我们假设,Omicron 变体更碱性的表面可能有助于其在上呼吸道传播,但在下呼吸道(pH 值估计不同)则不然。我们计算了不同 SARS-CoV-2 变异株中 Spike RBD 的淀粉样蛋白特性,并发现 FoldAmyloid 程序预测的每个变异株的 Spike RBD 中都有八个淀粉样蛋白区域。虽然 Wuhan 到 Gamma 变异株中的所有八个区域几乎相同,但其中两个在 Omicron 变异株中都明显更长,使 Omicron RBD 更具淀粉样蛋白特性。我们讨论了 Omicron 变异株 RBDs 增加的预测淀粉样蛋白特性如何对蛋白质稳定性很重要,影响其与 ACE2 的相互作用并有助于免疫逃避。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6bf/9655063/9d5b95874363/ijms-23-13502-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验