Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
PLoS One. 2023 Feb 1;18(2):e0280263. doi: 10.1371/journal.pone.0280263. eCollection 2023.
Most of the classic texts in Kurdish literature are poems. Knowing the meter of the poems is helpful for correct reading, a better understanding of the meaning, and avoiding ambiguity. This paper presents a rule-based method for the automatic classification of the poem meter for the Central Kurdish language also known as Sorani. The metrical system of Kurdish poetry is divided into three classes quantitative, syllabic, and free verses. As the vowel length is not phonemic in the language, there are uncertainties in syllable weight and meter identification. The proposed method generates all the possible situations and then, by considering all lines of the input poem and the common meter patterns of Kurdish poetry, identifies the most probable meter type and pattern of the input poem. Evaluation of the method on a dataset from VejinBooks Kurdish corpus resulted in 97.3% of precision in meter type and 96.2% of precision in pattern identification.
库尔德文学中的大部分经典文本都是诗歌。了解诗歌的韵律有助于正确阅读,更好地理解其含义,并避免歧义。本文提出了一种基于规则的方法,用于自动对库尔德语(也称为索拉尼语)的诗歌韵律进行分类。库尔德诗歌的韵律系统分为三类:定量、音节和自由诗。由于该语言中的元音长度不是音位,因此在音节重量和韵律识别方面存在不确定性。所提出的方法生成了所有可能的情况,然后通过考虑输入诗歌的所有行以及库尔德诗歌的常见韵律模式,确定输入诗歌最可能的韵律类型和模式。在 VejinBooks 库尔德语语料库中的数据集上对该方法进行评估,结果表明韵律类型的准确率为 97.3%,模式识别的准确率为 96.2%。