Suppr超能文献

通过结合机械嵌入方案的神经网络实现加速量子力学/分子力学模拟

Accelerated Quantum Mechanics/Molecular Mechanics Simulations via Neural Networks Incorporated with Mechanical Embedding Scheme.

作者信息

Zhou Boyi, Zhou Yanzi, Xie Daiqian

机构信息

Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Hefei National Laboratory, Hefei 230088, China.

出版信息

J Chem Theory Comput. 2023 Feb 28;19(4):1157-1169. doi: 10.1021/acs.jctc.2c01131. Epub 2023 Feb 1.

Abstract

A powerful tool to study the mechanism of reactions in solutions or enzymes is to perform the quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations. However, the computational cost is too high due to the explicit electronic structure calculations at every time step of the simulation. A neural network (NN) method can accelerate the QM/MM-MD simulations, but it has long been a problem to accurately describe the QM/MM electrostatic coupling by NN in the electrostatic embedding (EE) scheme. In this work, we developed a new method to accelerate QM/MM calculations in the mechanic embedding (ME) scheme. The potentials and partial point charges of QM atoms are first learned by the embedded atom neural networks (EANN) approach. MD simulations are then performed on this EANN/MM potential energy surface (PES) to obtain free energy (FE) profiles for reactions, in which the QM/MM electrostatic coupling is treated in the mechanic embedding (ME) scheme. Finally, a weighted thermodynamic perturbation (wTP) corrects the FE profiles in the ME scheme to the EE scheme. For two reactions in water and one in methanol, our simulations reproduced the B3LYP/MM free energy profiles within 0.5 kcal/mol with a speed-up of 30-60-fold. The results show that the strategy of combining EANN potential in the ME scheme with the wTP correction is efficient and reliable for chemical reaction simulations in liquid. Another advantage of our method is that the QM PES is independent of the MM subsystem, so it can be applied to various MM environments as demonstrated by an S2 reaction studied in water and methanol individually, which used the same EANN PES. The free energy profiles are in excellent accordance with the results obtained from B3LYP/MM-MD simulations. In future, this method will be applied to the reactions of enzymes and their variants.

摘要

研究溶液或酶中反应机制的一个强大工具是进行量子力学/分子力学(QM/MM)分子动力学(MD)模拟。然而,由于在模拟的每个时间步都要进行显式电子结构计算,计算成本过高。神经网络(NN)方法可以加速QM/MM-MD模拟,但在静电嵌入(EE)方案中,用神经网络准确描述QM/MM静电耦合一直是个问题。在这项工作中,我们开发了一种新方法来加速机械嵌入(ME)方案中的QM/MM计算。首先通过嵌入原子神经网络(EANN)方法学习QM原子的势能和部分点电荷。然后在这个EANN/MM势能面(PES)上进行MD模拟,以获得反应的自由能(FE)分布,其中QM/MM静电耦合在机械嵌入(ME)方案中处理。最后,加权热力学微扰(wTP)将ME方案中的FE分布校正到EE方案。对于水中的两个反应和甲醇中的一个反应,我们的模拟重现了B3LYP/MM自由能分布,误差在0.5 kcal/mol以内,加速了30到60倍。结果表明,将ME方案中的EANN势能与wTP校正相结合的策略对于液体中的化学反应模拟是高效且可靠的。我们方法的另一个优点是QM PES与MM子系统无关,因此它可以应用于各种MM环境,如分别在水和甲醇中研究的一个S2反应所示,该反应使用了相同的EANN PES。自由能分布与B3LYP/MM-MD模拟得到的结果非常吻合。未来,该方法将应用于酶及其变体的反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验