School of Physics and Astronomy, Cardiff University, The Parade, CardiffCF24 3AA, U.K.
Department of Materials Science and Metallurgical Engineering and Inorganic Chemistry, Faculty of Sciences, University of Cádiz, Puerto Real11510, Cádiz, Spain.
ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8624-8635. doi: 10.1021/acsami.2c19292. Epub 2023 Feb 1.
Incorporating an intentional strain compensating InSb interface (IF) layer in InAs/GaSb type-II superlattices (T2SLs) enhances device performance. But there is a lack of studies that correlate this approach's optical and structural quality, so the mechanisms by which this improvement is achieved remain unclear. One critical issue in increasing the performance of InAs/GaSb T2SLs arises from the lattice mismatch between InAs and GaSb, leading to interfacial strain in the structure. Not only that but also, since each side of the InAs/GaSb heterosystem does not have common atoms, there is a possibility of atomic intermixing at the IFs. To address such issues, an intentional InSb interfacial layer is commonly introduced at the InAs-on-GaSb and GaSb-on-InAs IFs to compensate for the strain and the chemical mismatches. In this report, we investigate InAs/GaSb T2SLs with (Sample A) and without (Sample B) InSb IF layers emitting in the mid-wavelength infrared (MWIR) through photoluminescence (PL) and band structure simulations. The PL studies indicate that the maximum PL intensity of Sample A is 1.6 times stronger than that of Sample B. This could be attributed to the effect of migration-enhanced epitaxy (MEE) growth mode. Band structure simulations understand the impact of atomic intermixing and segregation at T2SL IFs on the bandgap energy and PL intensity. It is observed that atomic intermixing at the IFs changes the bandgap energy and significantly affects the wave function overlap and the optical property of the samples. Transmission electron microscopy (TEM) measurements reveal that the T2SL IFs in Sample A are very rough compared to sharp IFs in Sample B, indicating a high possibility of atomic intermixing and segregation. Based on these results, it is believed that high-quality heterostructure could be achieved by controlling the IFs to enhance its structural and compositional homogeneities and the optical properties of the T2SLs.
在 InAs/GaSb 型 II 超晶格 (T2SL) 中引入有意应变补偿 InSb 界面 (IF) 层可以提高器件性能。但是,缺乏相关研究来关联这种方法的光学和结构质量,因此,其改善的机制尚不清楚。提高 InAs/GaSb T2SL 性能的一个关键问题是由于 InAs 和 GaSb 之间的晶格失配导致结构中的界面应变。不仅如此,由于 InAs/GaSb 异质系统的每一侧都没有共同的原子,因此在 IF 处有可能发生原子混合。为了解决这些问题,通常在 InAs 上 GaSb 和 GaSb 上 InAs 的 IF 处引入有意的 InSb 界面层来补偿应变和化学失配。在本报告中,我们通过光致发光 (PL) 和能带结构模拟研究了发射中波红外 (MWIR) 的具有 (样品 A) 和不具有 (样品 B) InSb IF 层的 InAs/GaSb T2SL。PL 研究表明,样品 A 的最大 PL 强度比样品 B 强 1.6 倍。这可能归因于迁移增强外延 (MEE) 生长模式的影响。能带结构模拟理解了 T2SL IF 处原子混合和偏析对带隙能量和 PL 强度的影响。观察到 IF 处的原子混合会改变带隙能量,并对波函数重叠和样品的光学性质产生显著影响。透射电子显微镜 (TEM) 测量表明,与样品 B 中尖锐的 IF 相比,样品 A 中的 T2SL IF 非常粗糙,表明原子混合和偏析的可能性很高。基于这些结果,人们相信通过控制 IF 可以提高其结构和组成均匀性以及 T2SL 的光学性质来实现高质量的异质结构。