Suppr超能文献

单细胞和批量组织转录组谱的综合免疫基因组分析揭示了与卵巢癌免疫和临床特征不同的巨噬细胞激活模式。

Integrated immunogenomic analysis of single-cell and bulk tissue transcriptome profiling unravels a macrophage activation paradigm associated with immunologically and clinically distinct behaviors in ovarian cancer.

机构信息

School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, P. R. China.

Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China.

出版信息

J Adv Res. 2023 Feb;44:149-160. doi: 10.1016/j.jare.2022.04.006. Epub 2022 Apr 15.

Abstract

INTRODUCTION

Increasing evidence demonstrates that the activation states and diverse spectrum of macrophage subtypes display dynamic heterogeneity in the tumor microenvironment, which plays a critical role in a variety of cancer types.

OBJECTIVES

To investigate the heterogeneity and the homeostasis of different macrophage subtypes, as well as their effect on biological and clinical manifestations of ovarian cancer (OV).

METHOD

Integrated immunogenomic analysis of single-cell and bulk tissuetranscriptome profiling was performed to systematically investigate the association between macrophage activation and prognostic and therapeutic efficacy. Consensus clustering analysis was used to define novel macrophage subtypes. An artificial neural network was used to simulate the dynamic activation of macrophages.

RESULTS

The pan-cohort results suggested that high relative infiltration abundance of M0 and M1 macrophages was associated with improved outcome and therapeutic efficacy. However, it was the opposite for M2 macrophages. Unsupervised consensus clustering analysis revealed two OV subgroups characterized by a balance between M0, M1 and M2 macrophages with distinct clinical and immunological behaviors. Finally, a macrophage polarization-derived artificial neural network model was proposed to serve as a robust prognostic factor and predictive biomarker for therapeutic efficacy, which was validated in different independent patient cohorts.

CONCLUSION

The present study provides a new understanding of macrophage heterogeneity and its association with OV prognosis and underlines the future clinical potential of a macrophage activation model for tumor prevention and treatment.

摘要

简介

越来越多的证据表明,肿瘤微环境中巨噬细胞的激活状态和多样化的表型谱表现出动态异质性,这在多种癌症类型中起着至关重要的作用。

目的

研究不同巨噬细胞亚型的异质性和动态平衡,以及它们对卵巢癌(OV)生物学和临床表型的影响。

方法

对单细胞和批量组织转录组谱进行整合免疫基因组分析,系统研究巨噬细胞激活与预后和治疗效果之间的关联。采用共识聚类分析定义新的巨噬细胞亚型。使用人工神经网络模拟巨噬细胞的动态激活。

结果

全队列结果表明,M0 和 M1 巨噬细胞的相对浸润丰度较高与改善预后和治疗效果相关。然而,M2 巨噬细胞则相反。无监督共识聚类分析揭示了两种 OV 亚组,其特征是 M0、M1 和 M2 巨噬细胞之间的平衡,具有不同的临床和免疫学行为。最后,提出了一个基于巨噬细胞极化的人工神经网络模型,作为治疗效果的稳健预后因素和预测生物标志物,在不同的独立患者队列中得到了验证。

结论

本研究提供了对巨噬细胞异质性及其与 OV 预后的关联的新认识,并强调了巨噬细胞激活模型在肿瘤预防和治疗中的未来临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c187/9936412/acd7d2789cbd/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验