Zhan Feng, Guo Yina, He Lidan
College of Engineering, Fujian Jiangxia University, Fuzhou, Fujian, China.
School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, China.
J Imaging Inform Med. 2024 Dec 11. doi: 10.1007/s10278-024-01366-6.
To evaluate the prognostic significance and molecular mechanism of NETosis markers in ovarian serous cystadenocarcinoma (OSC), we constructed a machine learning-based pathomic model utilizing hematoxylin and eosin (H&E) slides. We analyzed 333 patients with OSC from The Cancer Genome Atlas for prognostic-related neutrophil extracellular trap formation (NETosis) genes through bioinformatics analysis. Pathomic features were extracted from 54 cases with complete pathological images, genetic matrices, and clinical information. Two pathomic prognostic models were constructed using support vector machine (SVM) and logistic regression (LR) algorithms. Additionally, we established a predictive scoring system that integrated pathomic scores based on the NETcluster subtypes and clinical signature. We identified four NETosis genes significantly correlated with OSC prognosis, which were functionally associated with immune response, somatic mutations, tumor invasion, and metastasis. Five robust pathomic features were selected for overall survival prediction. The LR and SVM pathomic models demonstrated strong predictive performance for the NETcluster subtype classification through five-fold cross-validation. Time-dependent ROC analysis revealed excellent prognostic capability of the LR pathomic model's score for the overall survival (AUC values of 0.658, 0.761, and 0.735 at 36, 48, and 60 months, respectively), further validated by Kaplan-Meier analysis. The expression levels of NETosis genes greatly affected OSC patients' prognoses. The pathomic analysis of H&E slide pathological images provides an effective approach for predicting both NETcluster subtype and overall survival in OSC patients.
为了评估卵巢浆液性囊腺癌(OSC)中细胞外诱捕网形成(NETosis)标志物的预后意义和分子机制,我们利用苏木精和伊红(H&E)染色切片构建了基于机器学习的病理组学模型。我们通过生物信息学分析,对来自癌症基因组图谱的333例OSC患者进行了与预后相关的NETosis基因分析。从54例具有完整病理图像、基因矩阵和临床信息的病例中提取病理组学特征。使用支持向量机(SVM)和逻辑回归(LR)算法构建了两个病理组学预后模型。此外,我们建立了一个预测评分系统,该系统整合了基于NETcluster亚型和临床特征的病理组学评分。我们鉴定出四个与OSC预后显著相关的NETosis基因,它们在功能上与免疫反应、体细胞突变、肿瘤侵袭和转移相关。选择了五个稳健的病理组学特征用于总生存预测。通过五折交叉验证,LR和SVM病理组学模型对NETcluster亚型分类显示出强大的预测性能。时间依赖的ROC分析显示,LR病理组学模型的评分对总生存具有出色的预后能力(分别在36、48和60个月时的AUC值为0.658、0.761和0.735),经Kaplan-Meier分析进一步验证。NETosis基因的表达水平极大地影响了OSC患者的预后。对H&E染色切片病理图像的病理组学分析为预测OSC患者的NETcluster亚型和总生存提供了一种有效的方法。