Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam 1098XH, the Netherlands.
J Adv Res. 2023 Feb;44:227-232. doi: 10.1016/j.jare.2022.04.011. Epub 2022 Apr 23.
The characterisation of nasal formulations is a critical point. However, there are still no recommendations or guidelines in terms of standard approaches for evaluating the formulation's nasal deposition and/or coverage profile. This study optimises a method for quantifying silicone nasal cast deposition and coverage of liquid formulations using different nasal devices.
The present work investigates the nasal deposition and coverage patterns of innovative nasal spray nozzles producing slow velocity soft mists, using a nasal cavity replica and a fluorescent dye.
The study of the deposition pattern of a fluorescent liquid formulation in a transparent nasal cast was carried out in both the presence and absence of a simulated inhalation flow. The extent of the deposition pattern was investigated using ImageJ and fluorescence in the nasal cast, quantified by fluorometric analysis. The particle size distribution and initial droplet velocity were determined using a laser diffractometer and a high-speed camera with a frame rate of 1000 fps.
A uniform intranasal coverage was obtained with droplets of a volume median particle size (Dv50) between 15 and 25 µm in airflow between 10 and 30 L/min. In these conditions, aerosol formulations can be uniformly deposited in the vestibule and turbinate cavity nasal regions, with less than 10 % passing beyond the nasopharyngeal region.
The method applied allowed for the determination of the coverage of the nasal cast in different regions using images analysis and fluorometric analysis. Droplet velocity is a critical parameter in the deposition in the nasal cavity. With standard swirl nozzles, many droplets are found on the surface of the nasal vestibule. Soft mist nozzles produce smaller droplets at a much lower initial velocity (<1 m/s), resulting in a more uniform coverage.
鼻腔制剂的特征化是一个关键要点。然而,在评估制剂的鼻腔沉积和/或覆盖分布的标准方法方面,仍然没有建议或指南。本研究优化了一种使用不同鼻腔设备定量评估硅酮鼻腔铸模沉积和液体制剂覆盖的方法。
本工作使用鼻腔复制模型和荧光染料,研究了产生低速度软雾的创新鼻腔喷雾喷嘴对液体制剂的鼻腔沉积和覆盖模式。
在存在和不存在模拟吸入气流的情况下,在透明鼻腔铸模中对荧光液体制剂的沉积模式进行了研究。使用 ImageJ 研究沉积模式的范围,并通过荧光法对鼻腔铸模中的沉积进行定量分析。使用激光衍射仪和高速摄像机(帧率为 1000 fps)确定粒径分布和初始液滴速度。
在 10 至 30 L/min 的气流中,使用体积中位粒径(Dv50)在 15 至 25 µm 之间的液滴,可以获得均匀的鼻腔内覆盖。在这些条件下,气溶胶制剂可以均匀地沉积在前庭和鼻甲鼻腔区域,不到 10%的制剂穿过鼻咽区域。
应用的方法允许通过图像分析和荧光分析来确定不同区域的鼻腔铸模覆盖。液滴速度是鼻腔沉积的一个关键参数。使用标准旋流喷嘴,许多液滴会出现在鼻腔前庭的表面。软雾喷嘴产生初始速度低得多的小液滴(<1 m/s),从而实现更均匀的覆盖。