Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
J Chem Phys. 2023 Jan 28;158(4):044119. doi: 10.1063/5.0127621.
In the nonrelativistic Schrödinger equation, the total spin S and spin projection M are good quantum numbers. In contrast, spin symmetry is lost in the presence of spin-dependent interactions, such as spin-orbit couplings in relativistic Hamiltonians. Therefore, the relativistic density matrix renormalization group algorithm (R-DMRG) only employing particle number symmetry is much more expensive than nonrelativistic DMRG. In addition, artificial breaking of Kramers degeneracy can happen in the treatment of systems with an odd number of electrons. To overcome these issues, we propose time-reversal symmetry adaptation for R-DMRG. Since the time-reversal operator is antiunitary, this cannot be simply achieved in the usual way. We introduce a time-reversal symmetry-adapted renormalized basis and present strategies to maintain the structure of basis functions during the sweep optimization. With time-reversal symmetry adaptation, only half of the renormalized operators are needed, and the computational costs of Hamiltonian-wavefunction multiplication and renormalization are reduced by half. The present construction of the time-reversal symmetry-adapted basis also directly applies to other tensor network states without loops.
在非相对论薛定谔方程中,总自旋 S 和自旋投影 M 是好量子数。相比之下,在存在自旋相关相互作用的情况下,如相对论哈密顿量中的自旋轨道耦合,自旋对称性会丢失。因此,仅采用粒子数对称性的相对论密度矩阵重整化群算法(R-DMRG)比非相对论 DMRG 昂贵得多。此外,在处理奇数电子系统时,可能会发生人为破坏克拉默退化。为了克服这些问题,我们提出了用于 R-DMRG 的时间反演对称性适应。由于时间反演算符是反幺正的,因此不能以通常的方式简单地实现。我们引入了时间反演对称性自适应重整化基,并提出了在扫掠优化过程中保持基函数结构的策略。通过时间反演对称性适应,仅需要一半的重整化算符,并且哈密顿量-波函数乘法和重整化的计算成本降低了一半。时间反演对称性自适应基的这种构造也可以直接应用于没有环路的其他张量网络态。