Suppr超能文献

基于引力模型的超图关键节点识别。

Vital node identification in hypergraphs via gravity model.

机构信息

Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.

College of Media and International Culture, Zhejiang University, Hangzhou 310058, People's Republic of China.

出版信息

Chaos. 2023 Jan;33(1):013104. doi: 10.1063/5.0127434.

Abstract

Hypergraphs that can depict interactions beyond pairwise edges have emerged as an appropriate representation for modeling polyadic relations in complex systems. With the recent surge of interest in researching hypergraphs, the centrality problem has attracted much attention due to the challenge of how to utilize higher-order structure for the definition of centrality metrics. In this paper, we propose a new centrality method (HGC) on the basis of the gravity model as well as a semi-local HGC, which can achieve a balance between accuracy and computational complexity. Meanwhile, two comprehensive evaluation metrics, i.e., a complex contagion model in hypergraphs, which mimics the group influence during the spreading process and network s-efficiency based on the higher-order distance between nodes, are first proposed to evaluate the effectiveness of our methods. The results show that our methods can filter out nodes that have fast spreading ability and are vital in terms of hypergraph connectivity.

摘要

超图作为一种合适的表示方法,可以描绘出复杂系统中多元关系以外的相互作用。随着对超图研究的兴趣日益浓厚,由于需要利用高阶结构来定义中心度度量标准,中心度问题引起了广泛关注。在本文中,我们提出了一种新的基于引力模型的中心度方法(HGC)以及一种半局部 HGC,它可以在准确性和计算复杂性之间取得平衡。同时,我们首次提出了两种综合评价指标,即超图中的复杂传播模型,该模型模拟了传播过程中的群体影响,以及基于节点间高阶距离的网络效率,以评估我们方法的有效性。结果表明,我们的方法可以筛选出具有快速传播能力且对超图连接性至关重要的节点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验