Abbes Abderrahmane, Ouannas Adel, Shawagfeh Nabil, Grassi Giuseppe
Department of Mathematics, The University of Jordan, Amman, 11942, Jordan.
Department of Mathematics and Computer Science, University of Larbi Ben M'hidi, Oum El Bouaghi, 04000, Algeria.
Results Phys. 2022 Aug;39:105797. doi: 10.1016/j.rinp.2022.105797. Epub 2022 Jul 6.
This study aims to generalize the discrete integer-order SEIR model to obtain the novel discrete fractional-order SEIR model of COVID-19 and study its dynamic characteristics. Here, we determine the equilibrium points of the model and discuss the stability analysis of these points in detail. Then, the non-linear dynamic behaviors of the suggested discrete fractional model for commensurate and incommensurate fractional orders are investigated through several numerical techniques, including maximum Lyapunov exponents, phase attractors, bifurcation diagrams and algorithm. Finally, we fitted the model with actual data to verify the accuracy of our mathematical study of the stability of the fractional discrete COVID-19 model.
本研究旨在推广离散整数阶SEIR模型,以获得新型的COVID-19离散分数阶SEIR模型,并研究其动态特性。在此,我们确定了该模型的平衡点,并详细讨论了这些点的稳定性分析。然后,通过包括最大Lyapunov指数、相吸引子、分岔图和算法在内的几种数值技术,研究了所提出的离散分数模型在 commensurate 和 incommensurate 分数阶情况下的非线性动态行为。最后,我们将该模型与实际数据进行拟合,以验证我们对分数离散COVID-19模型稳定性的数学研究的准确性。