Suppr超能文献

基于血浆生物标志物的聚类用于临床病理表型分析:来自波士顿肾活检队列的结果

The use of plasma biomarker-derived clusters for clinicopathologic phenotyping: results from the Boston Kidney Biopsy Cohort.

作者信息

Schmidt Insa M, Myrick Steele, Liu Jing, Verma Ashish, Srivastava Anand, Palsson Ragnar, Onul Ingrid F, Stillman Isaac E, Avillach Claire, Patil Prasad, Waikar Sushrut S

机构信息

Boston University School of Medicine and Boston Medical Center, Department of Medicine, Section of Nephrology, Boston, MA, USA.

Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA.

出版信息

Clin Kidney J. 2022 Sep 9;16(1):90-99. doi: 10.1093/ckj/sfac202. eCollection 2023 Jan.

Abstract

BACKGROUND

Protein biomarkers may provide insight into kidney disease pathology but their use for the identification of phenotypically distinct kidney diseases has not been evaluated.

METHODS

We used unsupervised hierarchical clustering on 225 plasma biomarkers in 541 individuals enrolled into the Boston Kidney Biopsy Cohort, a prospective cohort study of individuals undergoing kidney biopsy with adjudicated histopathology. Using principal component analysis, we studied biomarker levels by cluster and examined differences in clinicopathologic diagnoses and histopathologic lesions across clusters. Cox proportional hazards models tested associations of clusters with kidney failure and death.

RESULTS

We identified three biomarker-derived clusters. The mean estimated glomerular filtration rate was 72.9 ± 28.7, 72.9 ± 33.4 and 39.9 ± 30.4 mL/min/1.73 m in Clusters 1, 2 and 3, respectively. The top-contributing biomarker in Cluster 1 was AXIN, a negative regulator of the Wnt signaling pathway. The top-contributing biomarker in Clusters 2 and 3 was Placental Growth Factor, a member of the vascular endothelial growth factor family. Compared with Cluster 1, individuals in Cluster 3 were more likely to have tubulointerstitial disease ( < .001) and diabetic kidney disease ( < .001) and had more severe mesangial expansion [odds ratio (OR) 2.44, 95% confidence interval (CI) 1.29, 4.64] and inflammation in the fibrosed interstitium (OR 2.49 95% CI 1.02, 6.10). After multivariable adjustment, Cluster 3 was associated with higher risks of kidney failure (hazard ratio 3.29, 95% CI 1.37, 7.90) compared with Cluster 1.

CONCLUSION

Plasma biomarkers may identify clusters of individuals with kidney disease that associate with different clinicopathologic diagnoses, histopathologic lesions and adverse outcomes, and may uncover biomarker candidates and relevant pathways for further study.

摘要

背景

蛋白质生物标志物可能有助于深入了解肾脏疾病的病理,但尚未评估其在识别表型不同的肾脏疾病中的应用。

方法

我们对波士顿肾脏活检队列中541名个体的225种血浆生物标志物进行了无监督层次聚类分析,该队列是一项对接受肾脏活检并经判定组织病理学检查的个体进行的前瞻性队列研究。使用主成分分析,我们按聚类研究了生物标志物水平,并检查了各聚类间临床病理诊断和组织病理学病变的差异。Cox比例风险模型测试了聚类与肾衰竭和死亡的关联。

结果

我们识别出三个由生物标志物衍生的聚类。聚类1、2和3中估计的平均肾小球滤过率分别为72.9±28.7、72.9±33.4和39.9±30.4 mL/min/1.73 m²。聚类1中贡献最大的生物标志物是AXIN,它是Wnt信号通路的负调节因子。聚类2和3中贡献最大的生物标志物是胎盘生长因子,它是血管内皮生长因子家族的成员。与聚类1相比,聚类3中的个体更有可能患有肾小管间质疾病(P<0.001)和糖尿病肾病(P<0.001),并且有更严重的系膜扩张[比值比(OR)2.44,95%置信区间(CI)1.29,4.64]和纤维化间质中的炎症(OR 2.49,95%CI 1.02,6.10)。多变量调整后,与聚类1相比,聚类3与更高的肾衰竭风险相关(风险比3.29,95%CI 1.37,7.90)。

结论

血浆生物标志物可能识别出与不同临床病理诊断、组织病理学病变和不良结局相关的肾脏疾病个体聚类,并可能揭示可供进一步研究的生物标志物候选物和相关途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a98/9871860/d617f8becca3/sfac202fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验