Shafiei Reza, Hooper Matthew, McClellan Christopher, Oakey Helena, Stephens Jennifer, Lapierre Catherine, Tsuji Yukiko, Goeminne Geert, Vanholme Ruben, Boerjan Wout, Ralph John, Halpin Claire
Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, United Kingdom.
Faculty of Sciences, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia.
Front Plant Sci. 2023 Jan 16;13:1125003. doi: 10.3389/fpls.2022.1125003. eCollection 2022.
Barley is a major cereal crop for temperate climates, and a diploid genetic model for polyploid wheat. Cereal straw biomass is an attractive source of feedstock for green technologies but lignin, a key determinant of feedstock recalcitrance, complicates bio-conversion processes. However, manipulating lignin content to improve the conversion process could negatively affect agronomic traits. An alternative approach is to manipulate lignin composition which influences the physical and chemical properties of straw. This study validates the function of a barley ferulate 5-hydroxylase gene and demonstrates that its downregulation using the RNA-interference approach substantially impacts lignin composition. We identified five barley genes having putative ferulate 5-hydroxylase activity. Downregulation of substantially reduced the lignin syringyl/guaiacyl (S/G) ratio in straw while the lignin content, straw mechanical properties, plant growth habit, and grain characteristics all remained unaffected. Metabolic profiling revealed significant changes in the abundance of 173 features in the -RNAi lines. The drastic changes in the lignin polymer of transgenic lines highlight the plasticity of barley lignification processes and the associated potential for manipulating and improving lignocellulosic biomass as a feedstock for green technologies. On the other hand, our results highlight some differences between the lignin biosynthetic pathway in barley, a temperate climate grass, and the warm climate grass, rice, and underscore potential diversity in the lignin biosynthetic pathways in grasses.
大麦是温带气候下的主要谷类作物,也是多倍体小麦的二倍体遗传模型。谷类作物的秸秆生物质是绿色技术有吸引力的原料来源,但木质素作为原料难降解性的关键决定因素,使生物转化过程变得复杂。然而,操纵木质素含量以改善转化过程可能会对农艺性状产生负面影响。另一种方法是操纵影响秸秆物理和化学性质的木质素组成。本研究验证了大麦阿魏酸5-羟化酶基因的功能,并证明使用RNA干扰方法下调该基因会对木质素组成产生重大影响。我们鉴定出五个具有假定阿魏酸5-羟化酶活性的大麦基因。下调 显著降低了秸秆中木质素的紫丁香基/愈创木基(S/G)比值,而木质素含量、秸秆机械性能、植株生长习性和籽粒特性均未受影响。代谢谱分析揭示了RNA干扰株系中173个特征丰度的显著变化。转基因株系木质素聚合物的剧烈变化突出了大麦木质化过程的可塑性以及作为绿色技术原料操纵和改善木质纤维素生物质的相关潜力。另一方面,我们的结果突出了温带气候禾本科植物大麦与温暖气候禾本科植物水稻在木质素生物合成途径上的一些差异,并强调了禾本科植物木质素生物合成途径中潜在的多样性。