Pesaresi Paolo, Bono Pierre, Corn Stephane, Crosatti Cristina, Daniotti Sara, Jensen Jens Due, Frébort Ivo, Groli Eder, Halpin Claire, Hansson Mats, Hensel Goetz, Horner David S, Houston Kelly, Jahoor Ahmed, Klíma Miloš, Kollist Hannes, Lacoste Clément, Laidoudi Boubker, Larocca Susanna, Marè Caterina, Moigne Nicolas Le, Mizzotti Chiara, Morosinotto Tomas, Oldach Klaus, Rossini Laura, Raubach Sebastian, Sanchez-Garcia Miguel, Shaw Paul D, Sonnier Rodolphe, Tondelli Alessandro, Waugh Robbie, Weber Andreas P M, Yarmolinsky Dmitry, Zeni Alessandro, Cattivelli Luigi
Department of Biosciences, University of Milan, Milan, 20133, Italy.
FRD-CODEM (Fibres Recherche Développement-Construction Durable et EcoMatériaux), Hôtel de Bureaux, Technopole de l'Aube en Champagne, 2 rue Gustave Eiffel, CS 90601, Troyes Cedex 9, 10 901, France.
Plant J. 2025 Feb;121(3):e17264. doi: 10.1111/tpj.17264.
There is a need for ground-breaking technologies to boost crop yield, both grains and biomass, and their processing into economically competitive materials. Novel cereals with enhanced photosynthesis and assimilation of greenhouse gasses, such as carbon dioxide and ozone, and tailored straw suitable for industrial manufacturing, open a new perspective for the circular economy. Here we describe the vision, strategies, and objectives of BEST-CROP, a Horizon-Europe and United Kingdom Research and Innovation (UKRI) funded project that relies on an alliance of academic plant scientists teaming up with plant breeding companies and straw processing companies to use the major advances in photosynthetic knowledge to improve barley biomass and to exploit the variability of barley straw quality and composition. We adopt the most promising strategies to improve the photosynthetic properties and ozone assimilation capacity of barley: (i) tuning leaf chlorophyll content and modifying canopy architecture; (ii) increasing the kinetics of photosynthetic responses to changes in irradiance; (iii) introducing photorespiration bypasses; (iv) modulating stomatal opening, thus increasing the rate of carbon dioxide fixation and ozone assimilation. We expect that by improving our targeted traits we will achieve increases in aboveground total biomass production without modification of the harvest index, with added benefits in sustainability via better resource-use efficiency of water and nitrogen. In parallel, the resulting barley straw is tailored to: (i) increase straw protein content to make it suitable for the development of alternative biolubricants and feed sources; (ii) control cellulose/lignin contents and lignin properties to develop straw-based construction panels and polymer composites. Overall, by exploiting natural- and induced-genetic variability as well as gene editing and transgenic engineering, BEST-CROP will lead to multi-purpose next generation barley cultivars supporting sustainable agriculture and capable of straw-based applications.
需要突破性技术来提高作物产量,包括谷物和生物质,并将其加工成具有经济竞争力的材料。具有增强光合作用和温室气体(如二氧化碳和臭氧)同化能力的新型谷物,以及适合工业制造的定制秸秆,为循环经济开辟了新的前景。在此,我们描述了BEST-CROP项目的愿景、策略和目标,该项目由欧洲地平线计划和英国研究与创新署(UKRI)资助,依靠学术植物科学家与植物育种公司和秸秆加工公司组成的联盟,利用光合作用知识的重大进展来提高大麦生物量,并利用大麦秸秆质量和成分的变异性。我们采用最有前景的策略来改善大麦的光合特性和臭氧同化能力:(i)调节叶片叶绿素含量并改变冠层结构;(ii)提高光合作用对光照变化响应的动力学;(iii)引入光呼吸旁路;(iv)调节气孔开放,从而提高二氧化碳固定率和臭氧同化率。我们预计,通过改善我们的目标性状,将在不改变收获指数的情况下实现地上总生物量产量的增加,并通过提高水和氮的资源利用效率在可持续性方面带来额外好处。同时,所得大麦秸秆经过定制,以:(i)提高秸秆蛋白质含量,使其适合开发替代生物润滑剂和饲料来源;(ii)控制纤维素/木质素含量和木质素特性,以开发秸秆基建筑板材和聚合物复合材料。总体而言,通过利用自然和诱导的遗传变异性以及基因编辑和转基因工程,BEST-CROP将培育出支持可持续农业并能够用于秸秆基应用的多用途下一代大麦品种。