Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China.
College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China.
Adv Sci (Weinh). 2023 Apr;10(10):e2206877. doi: 10.1002/advs.202206877. Epub 2023 Feb 2.
Electromagnetic (EM) wave pollution is harmful to human health and environment, thus it is absolutely important to develop new electromagnetic wave absorbing materials. MAX phases have been attracted more attention as a potential candidate for electromagnetic wave absorbing materials due to their high conductivity and nanolaminated structure. Herein, two new magnetic MAX phases with multiprincipal elements ((Ti Nb Ta ) FeC and (Ti V Nb Ta Zr ) FeC) in which Fe atoms replace Al atoms in the A sites are successfully synthesized by an isomorphous replacement reaction of multiprincipal (Ti Nb Ta ) AlC and (Ti V Nb Ta Zr ) AlC MAX phases with Lewis acid salt (FeCl ). (Ti Nb Ta ) FeC and (Ti V Nb Ta Zr ) FeC exhibit ferromagnetic behavior, and the Curie temperature (T ) are 302 and 235 K, respectively. The dual electromagnetic absorption mechanisms that include dielectric and magnetic loss, which is realized in these multiprincipal MAX phases. The minimum reflection loss (RL) of (Ti Nb Ta ) FeC is -44.4 dB at 6.56 GHz with 3 mm thickness, and the effective bandwidth is 2.48 GHz. Additionally, the electromagnetic wave absorption properties of the magnetic MAX phases indicate that magnetic loss also plays an important role besides dielectric loss. This work shows a promising composition-design strategy to develop MAX phases with good EM wave absorption performance via simultaneously regulating dielectric and magnetic loss together.
电磁波污染对人类健康和环境有害,因此开发新型电磁波吸收材料至关重要。MAX 相因其高导电性和纳米层状结构而成为电磁波吸收材料的潜在候选材料,受到了更多的关注。本文通过多主元(TiNbTa)AlC 和(TiVNbTaZr)AlC MAX 相向路易斯酸盐(FeCl3)的同晶取代反应,成功合成了两种新型含多主元元素的磁性 MAX 相(TiNbTa)FeC 和(TiVNbTaZr)FeC,其中 Fe 原子取代了 A 位的 Al 原子。(TiNbTa)FeC 和(TiVNbTaZr)FeC 表现出铁磁性,居里温度(T)分别为 302 和 235 K。这些多主元 MAX 相实现了介电损耗和磁损耗的双重电磁吸收机制。(TiNbTa)FeC 在 6.56 GHz、3 mm 厚度下的最小反射损耗(RL)为-44.4 dB,有效带宽为 2.48 GHz。此外,磁性 MAX 相的电磁波吸收性能表明,除了介电损耗外,磁损耗也起着重要作用。这项工作展示了一种有前途的组成设计策略,通过同时调节介电损耗和磁损耗,开发具有良好电磁波吸收性能的 MAX 相。