Suppr超能文献

基于仿生结构的抗熔融火山灰热障涂层。

Molten-Volcanic-Ash-Phobic Thermal Barrier Coating based on Biomimetic Structure.

机构信息

School of Materials Science and Engineering, Beihang University, Xueyuan Road 37, Beijing, 100191, China.

Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, 310023, China.

出版信息

Adv Sci (Weinh). 2023 Apr;10(10):e2205156. doi: 10.1002/advs.202205156. Epub 2023 Feb 2.

Abstract

Volcanic ash is a major threat to aviation safety. The softening/melting temperatures of volcanic ash lie far below typical aero-engine operating temperatures. Thus, molten ash can accelerate the failure of thermal barrier coatings (TBCs). Here, inspired by natural superhydrophobic surfaces (e.g., the lotus leaf), a molten-volcanic-ash-phobic TBC, which provides a large possibility to eliminate molten ash issues of TBCs, is developed. A hierarchically structured surface is first prepared on a (Gd Yb ) Zr O (GYbZ) pellet by ultrafast laser direct writing technology, aiming to confirm the feasibility of the biomimetic microstructure to repel molten volcanic ash wetting. Then biomimetic-structured GYbZ TBCs are successfully fabricated using plasma spray physical vapor deposition, which reveals "silicate" phobicity at high temperatures. The exciting molten-volcanic-ash-phobic attribute of the designed surfaces is attributed to the lotus-leaf-like dual-scale microstructure, emulating in particular the existence of nanoparticles. These findings may be an important step toward the development of next-generation aviation engines with greatly reduced vulnerability to environmental siliceous debris.

摘要

火山灰是航空安全的主要威胁。火山灰的软化/熔融温度远低于典型的航空发动机工作温度。因此,熔融的火山灰会加速热障涂层(TBC)的失效。在这里,受天然超疏水表面(例如荷叶)的启发,开发了一种抗熔融火山灰的 TBC,这为消除 TBC 中熔融火山灰问题提供了很大的可能性。首先通过超快激光直写技术在(Gd Yb )ZrO(GYbZ)颗粒上制备了分层结构表面,旨在确认仿生微结构排斥熔融火山灰润湿的可行性。然后使用等离子喷涂物理气相沉积成功制备了仿生结构的 GYbZ TBC,这表明在高温下具有“硅酸盐”疏油性。设计表面的令人兴奋的抗熔融火山灰特性归因于类似于荷叶的双尺度微观结构,特别是模仿了纳米颗粒的存在。这些发现可能是朝着开发新一代对环境硅质碎片不易受影响的航空发动机迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c569/10074056/22028efed540/ADVS-10-2205156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验