Tufts School of Medicine.
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Glaucoma Service.
Curr Opin Ophthalmol. 2023 May 1;34(3):245-254. doi: 10.1097/ICU.0000000000000934. Epub 2022 Dec 27.
To summarize the recent literature on deep learning (DL) model applications in glaucoma detection and surveillance using posterior segment optical coherence tomography (OCT) imaging.
DL models use OCT derived parameters including retinal nerve fiber layer (RNFL) scans, macular scans, and optic nerve head (ONH) scans, as well as a combination of these parameters, to achieve high diagnostic accuracy in detecting glaucomatous optic neuropathy (GON). Although RNFL segmentation is the most widely used OCT parameter for glaucoma detection by ophthalmologists, newer DL models most commonly use a combination of parameters, which provide a more comprehensive approach. Compared to DL models for diagnosing glaucoma, DL models predicting glaucoma progression are less commonly studied but have also been developed.
DL models offer time-efficient, objective, and potential options in the management of glaucoma. Although artificial intelligence models have already been commercially accepted as diagnostic tools for other ophthalmic diseases, there is no commercially approved DL tool for the diagnosis of glaucoma, most likely in part due to the lack of a universal definition of glaucoma defined by OCT derived parameters alone (see Supplemental Digital Content 1 for video abstract, http://links.lww.com/COOP/A54 ).
总结使用后节光学相干断层扫描(OCT)成像的深度学习(DL)模型在青光眼检测和监测中的应用的最新文献。
DL 模型使用 OCT 衍生参数,包括视网膜神经纤维层(RNFL)扫描、黄斑扫描和视神经头(ONH)扫描,以及这些参数的组合,以实现对青光眼视神经病变(GON)的高诊断准确性。尽管 RNFL 分割是眼科医生检测青光眼最广泛使用的 OCT 参数,但较新的 DL 模型最常使用参数组合,这提供了更全面的方法。与用于诊断青光眼的 DL 模型相比,预测青光眼进展的 DL 模型研究较少,但也已经开发出来。
DL 模型为青光眼的管理提供了高效、客观和潜在的选择。尽管人工智能模型已经被商业接受为其他眼科疾病的诊断工具,但还没有用于诊断青光眼的商用 DL 工具,这很可能部分是由于缺乏仅由 OCT 衍生参数定义的青光眼的通用定义(有关视频摘要,请参阅补充数字内容 1,http://links.lww.com/COOP/A54)。