Department of Environmental Science and Engineering, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China.
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2215305120. doi: 10.1073/pnas.2215305120. Epub 2023 Feb 2.
Photosynthesis of hydrogen peroxide (HO) by selective oxygen reduction is a green and cost-effective alternative to the energy-intensive anthraquinone process. Although inexpensive polymeric graphitic carbon nitride (g-CN) exhibits the ability to produce HO, its disordered and amorphous structure leads to a high recombination rate of photogenerated carriers and hinders charge transfer between layers. Herein, we predict that stacked polymeric g-CN with ion intercalation (K and I) can improve carrier separation and transfer by multiscale computational simulations. The electronic structures of g-CN were tailored and modified by intercalating K and I into the layer-by-layer structures. Guided by the computational predictions, we achieved efficient solar-driven HO production by employing this facile and ion-intercalated crystalline g-CN. An HO production rate of 13.1 mM g h and an apparent quantum yield of 23.6% at 400 nm were obtained. The synergistic effects of crystallinity regulation and dual interstitial doping engineering triggered the formation of new light absorption centers, the establishment of rapid charge diffusion channels, and the enhancement of two-electron oxygen reduction characteristics. This work sheds light on the dual tuning of crystallinity and electronic structure and broadens the design principles of organic-conjugated polymer photocatalysts for environmental remediation and energy conservation.
通过选择性氧气还原来进行过氧化氢(HO)的光合作用是一种绿色且具有成本效益的替代方案,可以替代能源密集型蒽醌工艺。虽然廉价的聚合石墨相氮化碳(g-CN)具有产生 HO 的能力,但由于其无序和非晶态结构,导致光生载流子的复合率很高,阻碍了层间的电荷转移。在此,我们通过多尺度计算模拟预测,堆叠的具有离子插层(K 和 I)的聚合 g-CN 可以通过改善载流子分离和转移来提高性能。通过将 K 和 I 插层到层状结构中,对 g-CN 的电子结构进行了剪裁和修饰。根据计算预测的结果,我们通过采用这种简便的离子插层结晶 g-CN,实现了高效的太阳能驱动 HO 的产生。在 400nm 处,HO 的产生速率为 13.1mM g h,表观量子效率为 23.6%。结晶度调控和双间隙掺杂工程的协同效应触发了新的光吸收中心的形成、快速电荷扩散通道的建立以及对两电子氧还原特性的增强。这项工作揭示了结晶度和电子结构的双重调控,并拓宽了有机共轭聚合物光催化剂在环境修复和节能方面的设计原则。