Rosu-Finsen Alexander, Davies Michael B, Amon Alfred, Wu Han, Sella Andrea, Michaelides Angelos, Salzmann Christoph G
Department of Chemistry, University College London, London WC1H 0AJ, UK.
Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
Science. 2023 Feb 3;379(6631):474-478. doi: 10.1126/science.abq2105. Epub 2023 Feb 2.
Amorphous ices govern a range of cosmological processes and are potentially key materials for explaining the anomalies of liquid water. A substantial density gap between low-density and high-density amorphous ice with liquid water in the middle is a cornerstone of our current understanding of water. However, we show that ball milling "ordinary" ice I at low temperature gives a structurally distinct medium-density amorphous ice (MDA) within this density gap. These results raise the possibility that MDA is the true glassy state of liquid water or alternatively a heavily sheared crystalline state. Notably, the compression of MDA at low temperature leads to a sharp increase of its recrystallization enthalpy, highlighting that HO can be a high-energy geophysical material.
非晶态冰控制着一系列宇宙学过程,并且可能是解释液态水异常现象的关键材料。低密度和高密度非晶态冰之间存在很大的密度差距,中间是液态水,这是我们目前对水的理解的基石。然而,我们表明,在低温下对“普通”冰I进行球磨会在这个密度差距内产生一种结构独特的中密度非晶态冰(MDA)。这些结果增加了一种可能性,即MDA是液态水真正的玻璃态,或者是一种严重剪切的晶态。值得注意的是,低温下MDA的压缩会导致其再结晶焓急剧增加,这突出表明HO可能是一种高能地球物理材料。