Suppr超能文献

基于周期性相关电子结构方法迁移学习的数据高效机器学习势:AFQMC、CCSD和CCSD(T)精度下的液态水

Data-Efficient Machine Learning Potentials from Transfer Learning of Periodic Correlated Electronic Structure Methods: Liquid Water at AFQMC, CCSD, and CCSD(T) Accuracy.

作者信息

Chen Michael S, Lee Joonho, Ye Hong-Zhou, Berkelbach Timothy C, Reichman David R, Markland Thomas E

机构信息

Department of Chemistry, Stanford University, Stanford, California94305, United States.

Department of Chemistry, Columbia University, New York, New York10027, United States.

出版信息

J Chem Theory Comput. 2023 Jul 25;19(14):4510-4519. doi: 10.1021/acs.jctc.2c01203. Epub 2023 Feb 2.

Abstract

Obtaining the atomistic structure and dynamics of disordered condensed-phase systems from first-principles remains one of the forefront challenges of chemical theory. Here we exploit recent advances in periodic electronic structure and provide a data-efficient approach to obtain machine-learned condensed-phase potential energy surfaces using AFQMC, CCSD, and CCSD(T) from a very small number (≤200) of energies by leveraging a transfer learning scheme starting from lower-tier electronic structure methods. We demonstrate the effectiveness of this approach for liquid water by performing both classical and path integral molecular dynamics simulations on these machine-learned potential energy surfaces. By doing this, we uncover the interplay of dynamical electron correlation and nuclear quantum effects across the entire liquid range of water while providing a general strategy for efficiently utilizing periodic correlated electronic structure methods to explore disordered condensed-phase systems.

摘要

从第一性原理获得无序凝聚相系统的原子结构和动力学仍然是化学理论的前沿挑战之一。在此,我们利用周期性电子结构的最新进展,通过利用从较低层次电子结构方法出发的迁移学习方案,提供一种数据高效的方法,从极少量(≤200个)能量中使用AFQMC、CCSD和CCSD(T)来获得机器学习的凝聚相势能面。我们通过在这些机器学习的势能面上进行经典和路径积分分子动力学模拟,证明了该方法对液态水的有效性。通过这样做,我们揭示了动态电子关联和核量子效应在整个水的液态范围内的相互作用,同时提供了一种有效利用周期性关联电子结构方法来探索无序凝聚相系统的通用策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验