Chen Michael S, Lee Joonho, Ye Hong-Zhou, Berkelbach Timothy C, Reichman David R, Markland Thomas E
Department of Chemistry, Stanford University, Stanford, California94305, United States.
Department of Chemistry, Columbia University, New York, New York10027, United States.
J Chem Theory Comput. 2023 Jul 25;19(14):4510-4519. doi: 10.1021/acs.jctc.2c01203. Epub 2023 Feb 2.
Obtaining the atomistic structure and dynamics of disordered condensed-phase systems from first-principles remains one of the forefront challenges of chemical theory. Here we exploit recent advances in periodic electronic structure and provide a data-efficient approach to obtain machine-learned condensed-phase potential energy surfaces using AFQMC, CCSD, and CCSD(T) from a very small number (≤200) of energies by leveraging a transfer learning scheme starting from lower-tier electronic structure methods. We demonstrate the effectiveness of this approach for liquid water by performing both classical and path integral molecular dynamics simulations on these machine-learned potential energy surfaces. By doing this, we uncover the interplay of dynamical electron correlation and nuclear quantum effects across the entire liquid range of water while providing a general strategy for efficiently utilizing periodic correlated electronic structure methods to explore disordered condensed-phase systems.
从第一性原理获得无序凝聚相系统的原子结构和动力学仍然是化学理论的前沿挑战之一。在此,我们利用周期性电子结构的最新进展,通过利用从较低层次电子结构方法出发的迁移学习方案,提供一种数据高效的方法,从极少量(≤200个)能量中使用AFQMC、CCSD和CCSD(T)来获得机器学习的凝聚相势能面。我们通过在这些机器学习的势能面上进行经典和路径积分分子动力学模拟,证明了该方法对液态水的有效性。通过这样做,我们揭示了动态电子关联和核量子效应在整个水的液态范围内的相互作用,同时提供了一种有效利用周期性关联电子结构方法来探索无序凝聚相系统的通用策略。