Bensberg Moritz, Eckhoff Marco, Husistein Raphael T, Teynor Matthew S, Sora Valentina, Bro-Jørgensen William, Thomasen F Emil, Krogh Anders, Lindorff-Larsen Kresten, Solomon Gemma C, Weymuth Thomas, Reiher Markus
ETH Zurich Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
University of Copenhagen Department of Chemistry and Nano-Science Center, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
J Chem Theory Comput. 2025 Aug 12;21(15):7662-7674. doi: 10.1021/acs.jctc.5c00389. Epub 2025 Jul 29.
We present a quantum-in-quantum embedding strategy coupled to machine learning potentials to improve on the accuracy of quantum-classical hybrid models for the description of large molecules. In such hybrid models, relevant structural regions (such as those around reaction centers or pockets for binding of host molecules) can be described by a quantum model that is then embedded into a classical molecular-mechanics environment. However, this quantum region may become so large that only approximate electronic structure models are applicable. To then restore accuracy in the quantum description, we here introduce the concept of quantum cores within the quantum region that are amenable to accurate electronic structure models due to their limited size. Huzinaga-type projection-based embedding, for example, can deliver accurate electronic energies obtained with advanced electronic structure methods. The resulting total electronic energies are then fed into a transfer learning approach that efficiently exploits the higher-accuracy data to improve on a machine learning potential obtained for the original quantum-classical hybrid approach. We explore the potential of this approach in the context of a well-studied protein-ligand complex for which we calculate the free energy of binding using alchemical free energy and nonequilibrium switching simulations.
我们提出了一种与机器学习势相结合的量子中量子嵌入策略,以提高量子 - 经典混合模型描述大分子的准确性。在这种混合模型中,相关的结构区域(如反应中心周围或主体分子结合口袋周围的区域)可以用量子模型来描述,然后将其嵌入到经典分子力学环境中。然而,这个量子区域可能会变得如此之大,以至于只有近似的电子结构模型才适用。为了恢复量子描述的准确性,我们在此引入量子区域内量子核的概念,由于其尺寸有限,这些量子核对精确的电子结构模型是适用的。例如,基于Huzinaga型投影的嵌入可以提供用先进电子结构方法获得的精确电子能量。然后将得到的总电子能量输入到迁移学习方法中,该方法有效地利用更高精度的数据来改进为原始量子 - 经典混合方法获得的机器学习势。我们在一个经过充分研究的蛋白质 - 配体复合物的背景下探索这种方法的潜力,为此我们使用炼金术自由能和非平衡切换模拟来计算结合自由能。