Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
J Chem Phys. 2023 Jun 7;158(21). doi: 10.1063/5.0151266.
The rise of machine learning has greatly influenced the field of computational chemistry and atomistic molecular dynamics simulations in particular. One of its most exciting prospects is the development of accurate, full-dimensional potential energy surfaces (PESs) for molecules and clusters, which, however, often require thousands to tens of thousands of ab initio data points restricting the community to medium sized molecules and/or lower levels of theory (e.g., density functional theory). Transfer learning, which improves a global PES from a lower to a higher level of theory, offers a data efficient alternative requiring only a fraction of the high-level data (on the order of 100 are found to be sufficient for malonaldehyde). This work demonstrates that even with Hartree-Fock theory and a double-zeta basis set as the lower level model, transfer learning yields coupled-cluster single double triple [CCSD(T)]-level quality for H-transfer barrier energies, harmonic frequencies, and H-transfer tunneling splittings. Most importantly, finite-temperature molecular dynamics simulations on the sub-μs time scale in the gas phase are possible and the infrared spectra determined from the transfer-learned PESs are in good agreement with the experiment. It is concluded that routine, long-time atomistic simulations on PESs fulfilling CCSD(T)-standards become possible.
机器学习的兴起极大地影响了计算化学领域,特别是原子分子动力学模拟。其最令人兴奋的前景之一是为分子和团簇开发准确的全维势能面(PES),然而,这通常需要数千到数万的从头算数据点,这限制了研究人员只能处理中等大小的分子和/或较低水平的理论(例如,密度泛函理论)。迁移学习可以从较低的理论水平提高全局 PES 的精度,它提供了一种数据高效的替代方法,只需要少量的高级别数据(据发现,对于丙二醛,只需要大约 100 个数据点就足够了)。这项工作表明,即使使用 Hartree-Fock 理论和双-zeta 基组作为较低水平的模型,迁移学习也可以为 H 转移势垒能量、谐波频率和 H 转移隧道分裂等参数生成耦合簇单双三 [CCSD(T)] 级别的精度。最重要的是,在气相中可以进行亚微秒时间尺度的有限温度分子动力学模拟,并且从迁移学习得到的 PES 确定的红外光谱与实验结果非常吻合。因此,可以得出结论,满足 CCSD(T) 标准的常规长时间原子级模拟成为可能。