School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China; Shenzhen Research Institute of Big Data, Shenzhen, China; University of Science and Technology of China, Hefei, China.
Radiology Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Comput Med Imaging Graph. 2023 Apr;105:102186. doi: 10.1016/j.compmedimag.2023.102186. Epub 2023 Jan 21.
Bone suppression is to suppress the superimposed bone components over the soft tissues within the lung area of Chest X-ray (CXR), which is potentially useful for the subsequent lung disease diagnosis for radiologists, as well as computer-aided systems. Despite bone suppression methods for frontal CXRs being well studied, it remains challenging for lateral CXRs due to the limited and imperfect DES dataset containing paired lateral CXR and soft-tissue/bone images and more complex anatomical structures in the lateral view. In this work, we propose a bone suppression method for lateral CXRs by leveraging a two-stage distillation learning strategy and a specific data correction method. Specifically, a primary model is first trained on a real DES dataset with limited samples. The bone-suppressed results on a relatively large lateral CXR dataset produced by the primary model are improved by a designed gradient correction method. Secondly, the corrected results serve as training samples to train the distillated model. By automatically learning knowledge from both the primary model and the extra correction procedure, our distillated model is expected to promote the performance of the primary model while omitting the tedious correction procedure. We adopt an ensemble model named MsDd-MAP for the primary and distillated models, which learns the complementary information of Multi-scale and Dual-domain (i.e., intensity and gradient) and fuses them in a maximum-a-posteriori (MAP) framework. Our method is evaluated on a two-exposure lateral DES dataset consisting of 46 subjects and a lateral CXR dataset consisting of 240 subjects. The experimental results suggest that our method is superior to other competing methods regarding the quantitative evaluation metrics. Furthermore, the subjective evaluation by three experienced radiologists also indicates that the distillated model can produce more visually appealing soft-tissue images than the primary model, even comparable to real DES imaging for lateral CXRs.
骨抑制是指抑制胸部 X 射线(CXR)肺部区域内软组织上的叠加骨成分,这对于放射科医生以及计算机辅助系统进行后续肺部疾病诊断非常有用。尽管已经对正面 CXR 的骨抑制方法进行了充分研究,但由于包含配对的侧位 CXR 和软组织/骨图像的有限和不完善的 DES 数据集,以及侧位视图中更复杂的解剖结构,侧位 CXR 仍然具有挑战性。在这项工作中,我们提出了一种用于侧位 CXR 的骨抑制方法,该方法利用了两阶段蒸馏学习策略和特定的数据校正方法。具体来说,首先在具有有限样本的真实 DES 数据集上训练主要模型。通过设计的梯度校正方法,改进主要模型在相对较大的侧位 CXR 数据集上生成的骨抑制结果。其次,校正结果作为训练样本用于训练蒸馏模型。通过自动从主要模型和额外的校正过程中学习知识,我们的蒸馏模型有望在省略繁琐的校正过程的同时提高主要模型的性能。我们采用名为 MsDd-MAP 的集成模型作为主要和蒸馏模型,该模型学习多尺度和双域(即强度和梯度)的互补信息,并在最大后验(MAP)框架中融合它们。我们的方法在由 46 个受试者组成的两个曝光侧位 DES 数据集和由 240 个受试者组成的侧位 CXR 数据集上进行了评估。实验结果表明,我们的方法在定量评估指标方面优于其他竞争方法。此外,三位经验丰富的放射科医生的主观评估也表明,蒸馏模型可以生成比主要模型更具视觉吸引力的软组织图像,甚至与侧位 CXR 的真实 DES 成像相媲美。