Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
Department of Computer Science, University of California Irvine, Irvine, CA, USA.
Med Image Anal. 2024 Dec;98:103300. doi: 10.1016/j.media.2024.103300. Epub 2024 Aug 13.
Image-to-image translation is a vital component in medical imaging processing, with many uses in a wide range of imaging modalities and clinical scenarios. Previous methods include Generative Adversarial Networks (GANs) and Diffusion Models (DMs), which offer realism but suffer from instability and lack uncertainty estimation. Even though both GAN and DM methods have individually exhibited their capability in medical image translation tasks, the potential of combining a GAN and DM to further improve translation performance and to enable uncertainty estimation remains largely unexplored. In this work, we address these challenges by proposing a Cascade Multi-path Shortcut Diffusion Model (CMDM) for high-quality medical image translation and uncertainty estimation. To reduce the required number of iterations and ensure robust performance, our method first obtains a conditional GAN-generated prior image that will be used for the efficient reverse translation with a DM in the subsequent step. Additionally, a multi-path shortcut diffusion strategy is employed to refine translation results and estimate uncertainty. A cascaded pipeline further enhances translation quality, incorporating residual averaging between cascades. We collected three different medical image datasets with two sub-tasks for each dataset to test the generalizability of our approach. Our experimental results found that CMDM can produce high-quality translations comparable to state-of-the-art methods while providing reasonable uncertainty estimations that correlate well with the translation error.
图像到图像的转换是医学成像处理中的一个重要组成部分,在多种成像方式和临床场景中都有广泛的应用。以前的方法包括生成对抗网络(GAN)和扩散模型(DM),它们提供了真实感,但存在不稳定性和缺乏不确定性估计的问题。尽管 GAN 和 DM 方法各自在医学图像翻译任务中表现出了能力,但将 GAN 和 DM 结合起来以进一步提高翻译性能和实现不确定性估计的潜力在很大程度上仍未得到探索。在这项工作中,我们通过提出一种用于高质量医学图像翻译和不确定性估计的级联多路径捷径扩散模型(CMDM)来解决这些挑战。为了减少所需的迭代次数并确保稳健的性能,我们的方法首先获得一个条件 GAN 生成的先验图像,该图像将用于后续步骤中使用 DM 进行高效的反向翻译。此外,采用多路径捷径扩散策略来改进翻译结果并估计不确定性。级联流水线进一步提高了翻译质量,在级联之间进行残差平均。我们收集了三个不同的医学图像数据集,每个数据集有两个子任务,以测试我们方法的泛化能力。我们的实验结果发现,CMDM 可以生成与最先进方法相当的高质量翻译,同时提供合理的不确定性估计,与翻译误差相关性良好。