Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia.
Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia.
J Environ Manage. 2023 Apr 15;332:117351. doi: 10.1016/j.jenvman.2023.117351. Epub 2023 Jan 31.
In this work, CdS quantum dots (QDs) were successfully confined in polysulfone membrane (PSM) to develop a photoactive membrane under solar illumination that was suited in wastewater remediating system. The CdS@PSM membranes were prepared using the nonsolvent induced phase separation (NIPS) approach. Optical measurements show the confinement of CdS quantum dots (QDs) in the PS matrix within the narrowest band gap (2.41 eV) at 5 wt% loading. PS has two strong emission peaks at 411 and 432 nm due to photoelectron-hole recombination on pure PSM's surface. Adding 1 wt% CdS QDs to PSM reduced the earlier peak and blue-shifted the latter, within the appearance of three emission peaks attributed to the near band-edge emission of confined CdS QDs. Overloading CdS reduced all emission peaks. Moreover, fluorimetric monitoring of OH radicals indicates that PSM produces the least amount of photogenerated OH radicals while CdS@PSM(5 wt%) achieved the highest productivity. Examining the developed membranes in detoxifying methylene blue (MB) from aqueous solution of natural pH 8.1 showed weak adsorption in dark over 90 min of contact while switching to solar illumination significantly photodegrade MB where the degradation efficiency starts from 49% for pure PSM to 79% for CdS@PSM(5 wt%). Influence of pH was found crucial on photodegradation efficacy. Acidic pH 3 showed the weakest photodegradation efficacy, while the alkaline pH 12 was 18.88 times more effective. The used CdS@PSM (5 wt%) was successfully photo-renovated by soaking in 10 mL of NaOH solution under Solar illumination for 15 min to be used in 4 consecutive photodegradation cycles with insignificant decrease in efficacy. These findings are promising and could lead to a high-efficiency, sustainable photocatalytic suite.
在这项工作中,CdS 量子点 (QDs) 成功地被限制在聚砜膜 (PSM) 中,以在太阳光照射下开发适用于废水处理系统的光活性膜。CdS@PSM 膜是通过非溶剂致相分离 (NIPS) 方法制备的。光学测量显示,在 5wt%负载下,CdS 量子点 (QDs) 在 PS 基质中的限制具有最窄的能带隙 (2.41eV)。PS 由于纯 PSM 表面的光生电子-空穴复合,在 411 和 432nm 处有两个强发射峰。在 PSM 中加入 1wt%CdS QDs 会减少早期的峰值并蓝移后者,同时出现三个发射峰归因于受限 CdS QDs 的近带边发射。CdS 过载会降低所有发射峰。此外,OH 自由基的荧光监测表明,PSM 产生的光生 OH 自由基最少,而 CdS@PSM(5wt%) 则达到了最高的产率。在天然 pH8.1 的水溶液中从亚甲基蓝 (MB) 中检测到开发的膜,在黑暗中接触 90 分钟以上时吸附作用较弱,而切换到太阳光照射时,MB 的光降解作用显著增强,其中纯 PSM 的降解效率从 49%开始,而 CdS@PSM(5wt%)的降解效率为 79%。pH 的影响对光降解效果至关重要。pH3 的酸性显示出最弱的光降解效果,而碱性 pH12 的效果则高 18.88 倍。用过的 CdS@PSM(5wt%)在 15 分钟的太阳光照射下成功地在 10mlNaOH 溶液中浸泡光修复,可在 4 个连续的光降解循环中使用,而效率没有明显下降。这些发现很有希望,并可能导致高效、可持续的光催化套件。