Suppr超能文献

基于 RNA-Seq 分析的调控衰老的新型基因鉴定的荟萃分析。

A meta-analysis of RNA-Seq studies to identify novel genes that regulate aging.

机构信息

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Exp Gerontol. 2023 Mar;173:112107. doi: 10.1016/j.exger.2023.112107. Epub 2023 Feb 1.

Abstract

Aging is a ubiquitous biological process that limits the maximal lifespan of most organisms. Significant efforts by many groups have identified mechanisms that, when triggered by natural or artificial stimuli, are sufficient to either enhance or decrease maximal lifespan. Previous aging studies using the nematode Caenorhabditis elegans (C. elegans) generated a wealth of publicly available transcriptomics datasets linking changes in gene expression to lifespan regulation. However, a comprehensive comparison of these datasets across studies in the context of aging biology is missing. Here, we carry out a systematic meta-analysis of over 1200 bulk RNA sequencing (RNASeq) samples obtained from 74 peer-reviewed publications on aging-related transcriptomic changes in C. elegans. Using both differential expression analyses and machine learning approaches, we mine the pooled data for novel pro-longevity genes. We find that both approaches identify known and propose novel pro-longevity genes. Further, we find that inter-lab experimental variance complicates the application of machine learning algorithms, a limitation that was not solved using bulk RNA-Seq batch correction and normalization techniques. Taken as a whole, our results indicate that machine learning approaches may hold promise for the identification of genes that regulate aging but will require more sophisticated batch correction strategies or standardized input data to reliably identify novel pro-longevity genes.

摘要

衰老是一种普遍存在的生物学过程,限制了大多数生物的最大寿命。许多研究小组都做出了巨大的努力,已经确定了一些机制,这些机制在受到自然或人为刺激时,足以增强或减少最大寿命。先前使用秀丽隐杆线虫(C. elegans)的衰老研究产生了大量公开的转录组数据集,这些数据集将基因表达的变化与寿命调节联系起来。然而,在衰老生物学背景下,这些数据集在研究之间的全面比较仍然缺失。在这里,我们对来自 74 篇关于秀丽隐杆线虫衰老相关转录组变化的同行评审出版物的超过 1200 个批量 RNA 测序(RNASeq)样本进行了系统的荟萃分析。我们使用差异表达分析和机器学习方法,从汇集的数据中挖掘新的长寿基因。我们发现这两种方法都可以识别已知的和提出的新的长寿基因。此外,我们发现实验室间的实验差异使机器学习算法的应用变得复杂,批量 RNA-Seq 批次校正和归一化技术并不能解决这一限制。总的来说,我们的结果表明,机器学习方法可能有希望识别调节衰老的基因,但需要更复杂的批次校正策略或标准化输入数据来可靠地识别新的长寿基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a273/10653729/d907b0e872a7/nihms-1939203-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验