Han Keyi, Hua Xuanwen, Vasani Vishwa, Kim Ge-Ah R, Liu Wenhao, Takayama Shuichi, Jia Shu
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Biomed Opt Express. 2022 Oct 3;13(11):5574-5584. doi: 10.1364/BOE.471967. eCollection 2022 Nov 1.
Live-cell imaging reveals the phenotypes and mechanisms of cellular function and their dysfunction that underscore cell physiology, development, and pathology. Here, we report a 3D super-resolution live-cell microscopy method by integrating radiality analysis and Fourier light-field microscopy (FLFM). We demonstrated the method using various live-cell specimens, including actins in Hela cells, microtubules in mammary organoid cells, and peroxisomes in COS-7 cells. Compared with conventional wide-field microscopy, FLFM realizes scanning-free, volumetric 3D live-cell imaging with sub-diffraction-limited resolution of ∼150 nm () and 300 nm (), milliseconds volume acquisition time, six-fold extended depth of focus of ∼6 µm, and low photodamage. The method provides a promising avenue to explore spatiotemporal-challenging subcellular processes in a wide range of cell biological research.
活细胞成像揭示了细胞功能及其功能障碍的表型和机制,这些表型和机制是细胞生理学、发育和病理学的基础。在此,我们报告了一种通过整合径向分析和傅里叶光场显微镜(FLFM)的三维超分辨率活细胞显微镜方法。我们使用各种活细胞标本展示了该方法,包括HeLa细胞中的肌动蛋白、乳腺类器官细胞中的微管以及COS-7细胞中的过氧化物酶体。与传统宽场显微镜相比,FLFM实现了无扫描的体积三维活细胞成像,具有约150纳米(横向)和300纳米(轴向)的亚衍射极限分辨率、毫秒级的体积采集时间、约6微米的六倍扩展焦深以及低光损伤。该方法为在广泛的细胞生物学研究中探索时空挑战性的亚细胞过程提供了一条有前景的途径。