Ling Zhi, Liu Wenhao, Yoon Kyungduck, Hou Jessica, Forghani Parvin, Hua Xuanwen, Yoon Hansol, Bagheri Maryam, Dasi Lakshmi P, Mandracchia Biagio, Xu Chunhui, Nie Shuyi, Jia Shu
Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA, USA.
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Nat Cardiovasc Res. 2025 May;4(5):637-648. doi: 10.1038/s44161-025-00649-7. Epub 2025 May 7.
Cardiovascular diseases remain a pressing public health issue, necessitating the development of advanced therapeutic strategies underpinned by precise cardiac observations. While fluorescence microscopy is an invaluable tool for probing biological processes, cardiovascular signals are often complicated by persistent autofluorescence, overlaying dynamic cardiovascular entities and nonspecific labeling from tissue microenvironments. Here we present multiscale recursive decomposition for the precise extraction of dynamic cardiovascular signals. Multiscale recursive decomposition constructs a comprehensive framework for cardiac microscopy that includes pixel-wise image enhancement, robust principal component analysis and recursive motion segmentation. This method has been validated in various cardiac systems, including in vitro studies with human induced pluripotent stem cell-derived cardiomyocytes and in vivo studies of cardiovascular morphology and function in Xenopus embryos. The approach advances light-field cardiac microscopy, facilitating simultaneous, multiparametric and volumetric analysis of cardiac activities with minimum photodamage. We anticipate that the methodology will advance cardiovascular studies across a broad spectrum of cardiac models.
心血管疾病仍然是一个紧迫的公共卫生问题,因此需要开发以精确的心脏观测为基础的先进治疗策略。虽然荧光显微镜是探测生物过程的宝贵工具,但心血管信号常常因持续的自发荧光、动态心血管实体的叠加以及组织微环境的非特异性标记而变得复杂。在此,我们提出多尺度递归分解方法,用于精确提取动态心血管信号。多尺度递归分解构建了一个用于心脏显微镜检查的综合框架,其中包括逐像素图像增强、稳健主成分分析和递归运动分割。该方法已在各种心脏系统中得到验证,包括对人诱导多能干细胞衍生的心肌细胞的体外研究以及对非洲爪蟾胚胎心血管形态和功能的体内研究。该方法推动了光场心脏显微镜技术的发展,以最小的光损伤促进对心脏活动进行同步、多参数和体积分析。我们预计该方法将推动广泛的心脏模型的心血管研究。