Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18710-18714. doi: 10.1002/anie.201908258. Epub 2019 Oct 25.
[NiFe] hydrogenases are complex model enzymes for the reversible cleavage of dihydrogen (H ). However, structural determinants of efficient H binding to their [NiFe] active site are not properly understood. Here, we present crystallographic and vibrational-spectroscopic insights into the unexplored structure of the H -binding [NiFe] intermediate. Using an F -reducing [NiFe]-hydrogenase from Methanosarcina barkeri as a model enzyme, we show that the protein backbone provides a strained chelating scaffold that tunes the [NiFe] active site for efficient H binding and conversion. The protein matrix also directs H diffusion to the [NiFe] site via two gas channels and allows the distribution of electrons between functional protomers through a subunit-bridging FeS cluster. Our findings emphasize the relevance of an atypical Ni coordination, thereby providing a blueprint for the design of bio-inspired H -conversion catalysts.
[NiFe]氢化酶是复杂的模型酶,可用于可逆地裂解氢气 (H2)。然而,将 H2 高效结合到其 [NiFe]活性位点的结构决定因素尚未得到很好的理解。在这里,我们通过晶体学和振动光谱学研究了未被探索的 H 结合 [NiFe]中间产物的结构。我们使用来自 Methanosarcina barkeri 的 F 还原 [NiFe]-氢化酶作为模型酶,表明蛋白质骨架提供了一个应变螯合支架,可调节 [NiFe]活性位点以实现高效的 H2 结合和转化。蛋白质基质还通过两个气体通道引导 H2 扩散到 [NiFe]位点,并允许通过亚基桥连 FeS 簇在功能蛋白单体之间分配电子。我们的发现强调了非典型 Ni 配位的相关性,从而为设计仿生 H2 转化催化剂提供了蓝图。