Suppr超能文献

X 射线晶体学和振动光谱学揭示 [NiFe]氢化酶生物催化产氢循环的关键决定因素。

X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases.

机构信息

Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.

出版信息

Angew Chem Int Ed Engl. 2019 Dec 16;58(51):18710-18714. doi: 10.1002/anie.201908258. Epub 2019 Oct 25.

Abstract

[NiFe] hydrogenases are complex model enzymes for the reversible cleavage of dihydrogen (H ). However, structural determinants of efficient H binding to their [NiFe] active site are not properly understood. Here, we present crystallographic and vibrational-spectroscopic insights into the unexplored structure of the H -binding [NiFe] intermediate. Using an F -reducing [NiFe]-hydrogenase from Methanosarcina barkeri as a model enzyme, we show that the protein backbone provides a strained chelating scaffold that tunes the [NiFe] active site for efficient H binding and conversion. The protein matrix also directs H diffusion to the [NiFe] site via two gas channels and allows the distribution of electrons between functional protomers through a subunit-bridging FeS cluster. Our findings emphasize the relevance of an atypical Ni coordination, thereby providing a blueprint for the design of bio-inspired H -conversion catalysts.

摘要

[NiFe]氢化酶是复杂的模型酶,可用于可逆地裂解氢气 (H2)。然而,将 H2 高效结合到其 [NiFe]活性位点的结构决定因素尚未得到很好的理解。在这里,我们通过晶体学和振动光谱学研究了未被探索的 H 结合 [NiFe]中间产物的结构。我们使用来自 Methanosarcina barkeri 的 F 还原 [NiFe]-氢化酶作为模型酶,表明蛋白质骨架提供了一个应变螯合支架,可调节 [NiFe]活性位点以实现高效的 H2 结合和转化。蛋白质基质还通过两个气体通道引导 H2 扩散到 [NiFe]位点,并允许通过亚基桥连 FeS 簇在功能蛋白单体之间分配电子。我们的发现强调了非典型 Ni 配位的相关性,从而为设计仿生 H2 转化催化剂提供了蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c74/6916344/245986935c52/ANIE-58-18710-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验