School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
Phys Chem Chem Phys. 2023 Feb 15;25(7):5663-5672. doi: 10.1039/d2cp05663a.
The van der Waals integration can help 2D materials modulate their properties and provide more opportunities for 2D materials in the next-generation high-performance optoelectronic devices. Using first-principles calculations, we explored the atomic and electronic structures of 2D pristine and Janus group-IV monochalcogenides and found the internal vertical electric field at Janus group-IV monochalcogenides. Then, we constructed vdW heterostructures with pristine and Janus group-IV monochalcogenides monolayers as building blocks and explored their atomic structures and band alignments. Our results demonstrate that these vdW heterostructures can be synthesized experimentally, and the surface termination of the Janus monolayer at the interface can significantly help the heterostructure realize the transition from type I to type II due to the intrinsic electric field. Moreover, we found eight vdW heterostructures with a mismatch of less than 5% exhibiting type II band alignment with charge densities of VBM and CBM mainly localized at different domains of heterostructures, and excellent power conversion efficiency (∼19%) in photovoltaics are also predicted for these heterostructures with type II band alignment. Our results not only give an idea to use the Janus monolayer as building blocks to construct vdW heterostructures and modulate their band alignment but also provide a guide to the experimental researcher to design more efficient photovoltaic devices with Janus group-IV monochalcogenides.
范德华整合可以帮助二维材料调节其性质,并为二维材料在下一代高性能光电设备中提供更多机会。我们使用第一性原理计算,探索了二维本征和 Janus 族 IV 单卤代物的原子和电子结构,并在 Janus 族 IV 单卤代物中发现了内部垂直电场。然后,我们构建了以本征和 Janus 族 IV 单卤代物单层为构建块的 vdW 异质结构,并探索了它们的原子结构和能带排列。我们的结果表明,这些 vdW 异质结构可以通过实验合成,Janus 单层在界面处的表面终止可以由于固有电场而显著帮助异质结构实现从 I 型到 II 型的转变。此外,我们发现了八个范德华异质结构,其失配小于 5%,表现出 II 型能带排列,价带最大值 (VBM) 和导带最小值 (CBM) 的电荷密度主要局域在异质结构的不同域,并且对于具有 II 型能带排列的这些异质结构,预测出优异的光电转换效率(约 19%)。我们的结果不仅为使用 Janus 单层作为构建块构建 vdW 异质结构和调节其能带排列提供了思路,而且为实验研究人员设计具有 Janus 族 IV 单卤代物的更高效光伏器件提供了指导。