Suppr超能文献

基于近红外光谱结合深度学习技术评价香菇(担子菌纲)多糖含量

Evaluation of Polysaccharide Content in Shiitake Culinary-Medicinal Mushroom, Lentinula edodes (Agaricomycetes), via Near-Infrared Spectroscopy Integrated with Deep Learning.

机构信息

CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Institute of Intelligent Machines, Hefei Institute of Intelligent Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P.R. China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, P.R. China.

Innis College, University of Toronto, Canada.

出版信息

Int J Med Mushrooms. 2023;25(1):13-28. doi: 10.1615/IntJMedMushrooms.2022046298.

Abstract

Polysaccharide is one of the bioactive ingredients extracted from the fruiting body of Lentinula edodes (=L. edodes), which has many medicinal functions. While the content of polysaccharide can be measured by near-infrared (NIR) spectroscopy, the NIR analytical models established previously only covered L. edodes from very limited sources, and thus could not achieve high accuracy for large samples from more varied sources. Strictly, there is a nonlinear relationship between NIR spectral data and chemical label values, and traditional modeling methods for NIR data analysis have problems such as insufficient feature learning ability and difficulty in training. The deep learning model has excellent nonlinear modeling ability and generalization capacity, which is very suitable for analyzing larger samples. In this study, we constructed a novel framework with deep learning techniques on the NIR analysis of the content of polysaccharide in L. edodes. The siPLS model was established based on the combination of the bands 4797-3995 cm-1 and 6401-5600 cm-1, while the one-dimensional convolutional neural network (1D-CNN) model was established with improved feature in the treatment of the spectral data. The comparative experimental results showed that the 1D-CNN model (R2pre = 95.50%; RMSEP =0.1875) outperformed the siPLS model (R2pre = 87.89%, RMSEP = 0.6221). As such, this work has demonstrated that NIR spectroscopy with the integration of deep learning can provide more accurate quantification of polysaccharide in L. edodes. Such method can be very useful for nutritional grading and quality control of diverse L. edodes in the market.

摘要

多糖是从香菇(Lentinula edodes)子实体中提取的生物活性成分之一,具有多种药用功能。虽然可以通过近红外(NIR)光谱法来测量多糖的含量,但以前建立的 NIR 分析模型仅涵盖了非常有限来源的香菇,因此无法对来自更多不同来源的大量样本实现高精度。严格来说,NIR 光谱数据与化学标签值之间存在非线性关系,而传统的 NIR 数据分析建模方法存在特征学习能力不足和训练困难等问题。深度学习模型具有出色的非线性建模能力和泛化能力,非常适合分析更大的样本。在本研究中,我们使用深度学习技术构建了一个新颖的框架,用于分析香菇中多糖含量的 NIR 数据。基于 4797-3995 cm-1 和 6401-5600 cm-1 波段的组合,建立了 siPLS 模型,而一维卷积神经网络(1D-CNN)模型则通过改进特征处理光谱数据来建立。对比实验结果表明,1D-CNN 模型(R2pre = 95.50%;RMSEP = 0.1875)优于 siPLS 模型(R2pre = 87.89%,RMSEP = 0.6221)。因此,这项工作表明,结合深度学习的 NIR 光谱法可以更准确地定量测定香菇中的多糖。这种方法对于市场上不同香菇的营养分级和质量控制非常有用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验