Suppr超能文献

经改造的 HaloTag 实现活细胞可逆标记,支持长时程高分辨和超分辨成像。

Reversible Live-Cell Labeling with Retro-engineered HaloTags Enables Long-Term High- and Super-Resolution Imaging.

机构信息

Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany.

Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany.

出版信息

Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202219050. doi: 10.1002/anie.202219050. Epub 2023 Mar 10.

Abstract

Self-labeling enzymes (SLE) such as the HaloTag have emerged as powerful tools in high and super-resolution fluorescence microscopy. Newly developed fluorogenic SLE substrates enable imaging in the presence of excess dye. To exploit this feature for reversible labeling, we engineered two variants of HaloTag7 with restored dehalogenase activity. Kinetic studies in vitro showed different turnover kinetics for reHaloTagS (≈0.006 s ) and reHaloTagF (≈0.055 s ). Imaging by confocal and stimulated emission depletion microscopy yielded 3-5-time enhanced photostability of reHaloTag labeling. Prominently, single molecule imaging with reHaloTags enabled controlled and stable labeling density over extended time periods. By combination with structured illumination, simultaneous visualization of single molecule diffusion and organellar dynamics was achieved. These applications highlight the potential of reHaloTag labeling for pushing the limits of advanced fluorescence microscopy techniques.

摘要

自标记酶(SLE),如 HaloTag,已成为高分辨率和超高分辨率荧光显微镜技术中的有力工具。新开发的荧光 SLE 底物可在过量染料存在的情况下进行成像。为了利用这一特性进行可逆标记,我们设计了两种具有恢复脱卤酶活性的 HaloTag7 变体。体外动力学研究表明,reHaloTagS(≈0.006 s)和 reHaloTagF(≈0.055 s)的周转率不同。通过共聚焦和受激发射损耗显微镜成像,reHaloTag 标记的光稳定性提高了 3-5 倍。值得注意的是,reHaloTag 的单分子成像能够在较长时间内控制和稳定标记密度。通过与结构照明相结合,实现了单个分子扩散和细胞器动力学的同时可视化。这些应用凸显了 reHaloTag 标记在推动先进荧光显微镜技术极限方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验