Stanford Cancer Institute, Stanford School of Medicine, 1291 Welch Road, Stanford, CA 94305, USA.
Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA.
Curr Biol. 2023 Feb 27;33(4):688-696.e6. doi: 10.1016/j.cub.2023.01.012. Epub 2023 Feb 2.
Kinetochores control eukaryotic chromosome segregation by connecting chromosomal centromeres to spindle microtubules. Duplication of centromeric DNA necessitates kinetochore disassembly and subsequent reassembly on nascent sisters. To search for a regulatory mechanism that controls the earliest steps of this process, we studied Mif2/CENP-C, an essential basal component of the kinetochore. We found that phosphorylation of a central region of Mif2 (Mif2-PEST) enhances inner kinetochore assembly. Eliminating Mif2-PEST phosphorylation sites progressively impairs cellular fitness. The most severe Mif2-PEST mutations are lethal in cells lacking otherwise non-essential inner kinetochore factors. These data show that multi-site phosphorylation of Mif2/CENP-C controls inner kinetochore assembly.
动粒通过将染色体着丝粒连接到纺锤体微管上来控制真核染色体的分离。着丝粒 DNA 的复制需要动粒的解聚,然后在新形成的姐妹染色单体上重新组装。为了寻找控制这一过程最早步骤的调节机制,我们研究了 Mif2/CENP-C,这是动粒的一个基本核心组成部分。我们发现,Mif2 中央区域的磷酸化(Mif2-PEST)增强了内动粒的组装。逐渐消除 Mif2-PEST 磷酸化位点会逐渐损害细胞活力。最严重的 Mif2-PEST 突变在缺乏其他非必需的内动粒因子的细胞中是致命的。这些数据表明,Mif2/CENP-C 的多位点磷酸化控制着内动粒的组装。