Mechanical Engineering Department, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
Center for Catalysis and Separation (CeCas), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
Sci Rep. 2023 Feb 3;13(1):2006. doi: 10.1038/s41598-023-29137-3.
Hybrid nanofluids are extremely important in field of engineering and technology due to their higher heat transportation performance resulting in increased heat transfer rates. In the presence of thermal heat flux, the effect of a slanted MHD with velocity slip condition on a CNTs hybrid nanocomposite across a gradually extending surface is investigated. In present analysis, Maxwell nanofluid is embedded with SWCNT and MWCNT (single and multiple wall carbon nanotubes) nanoparticles. The nanomaterials transformation framework is obtained by employing Xue modified theoretical model. Various factors like dissipation, thermal radiations and Ohmic heat influences are adequately implemented in heat formulation. The physical features of thermodynamical mechanism of irreversibility are explored. The thermodynamics second law is used to produce the entropy optimization formulation. In addition, entropy is utilized to assess the energy aspects of a heat exchanger. Utilizing appropriate parameters, the model nonlinear PDEs are transformed to ODEs. The HAM technique is used to compute the solution of nonlinear ODEs. For both types of CNTs, the variations of entropy rate, Bejan number, velocity and temperature field versus key technical parameters is analyzed. The Nu and C computational result for both CNTs are examined in tabulated and chart form. Velocity is inversely proportional to magnetic and solid volume nanoparticle parameters. The Br and Rd accelerates NG and Be for both nanocomposites. Additionally, a comparison of the HAM result and the numerical result is validated.
由于混合纳米流体具有更高的传热性能,从而提高了传热速率,因此在工程和技术领域具有非常重要的意义。在存在热流的情况下,研究了具有速度滑移条件的倾斜 MHD 对 CNTs 混合纳米复合材料在逐渐扩展表面上的影响。在目前的分析中,Maxwell 纳米流体嵌入了 SWCNT 和 MWCNT(单壁和多壁碳纳米管)纳米颗粒。通过采用薛修正理论模型,获得了纳米材料转化框架。在热形成中充分考虑了耗散、热辐射和欧姆热等各种因素的影响。探讨了热力学不可逆性的物理特征。利用热力学第二定律产生了熵优化公式。此外,熵被用来评估热交换器的能量方面。利用适当的参数,将模型非线性 PDE 转换为 ODE。HAM 技术用于计算非线性 ODE 的解。对于两种类型的 CNTs,分析了熵率、Bejan 数、速度和温度场随关键技术参数的变化。以表格和图表的形式检查了两种 CNTs 的 Nu 和 C 计算结果。速度与磁场和固体体积纳米颗粒参数成反比。Br 和 Rd 均加速了两种纳米复合材料的 NG 和 Be。此外,还验证了 HAM 结果和数值结果的比较。