Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
J Biomed Sci. 2023 Feb 3;30(1):10. doi: 10.1186/s12929-023-00897-4.
The association between M segment splicing and pathogenicity remains ambiguous in human influenza A viruses. In this study, we aimed to investigate M splicing in various human influenza A viruses and characterize its physiological roles by applying the splicing inhibitor, herboxidiene.
We examined the M splicing of human H1N1 and H3N2 viruses by comparing three H1N1 and H3N2 strains, respectively, through reverse transcriptase-polymerase chain reaction (RT-PCR) analyses. We randomly selected M sequences of human H1N1, H2N2, and H3N2 viruses isolated from 1933 to 2020 and examined their phylogenetic relationships. Next, we determined the effects of single nucleotide variations on M splicing by generating mutant viruses harboring the 55C/T variant through reverse genetics. To confirm the importance of M2 splicing in the replication of H1N1 and H3N2, we treated infected cells with splicing inhibitor herboxidiene and analyzed the viral growth using plaque assay. To explore the physiological role of the various levels of M2 protein in pathogenicity, we challenged C57BL/6 mice with the H1N1 WSN wild-type strain, mutant H1N1 (55T), and chimeric viruses including H1N1 + H3wt and H1N1 + H3mut. One-tailed paired t-test was used for virus titer calculation and multiple comparisons between groups were performed using two-way analysis of variance.
M sequence splice site analysis revealed an evolutionarily conserved single nucleotide variant C55T in H3N2, which impaired M2 expression and was accompanied by collinear M1 and mRNA3 production. Aberrant M2 splicing resulted from splice-site selection rather than a general defect in the splicing process. The C55T substitution significantly reduced both M2 mRNA and protein levels regardless of the virus subtype. Consequently, herboxidiene treatment dramatically decreased both the H1N1 and H3N2 virus titers. However, a lower M2 expression only attenuated H1N1 virus replication and in vivo pathogenicity. This attenuated phenotype was restored by M replacement of H3N2 M in a chimeric H1N1 virus, despite low M2 levels.
The discrepancy in M2-dependence emphasizes the importance of M2 in human influenza A virus pathogenicity, which leads to subtype-specific evolution. Our findings provide insights into virus adaptation processes in humans and highlights splicing regulation as a potential antiviral target.
M 段剪接与致病性之间的关系在人类甲型流感病毒中仍然存在争议。在这项研究中,我们旨在通过应用剪接抑制剂赫罗比地因来研究各种人类甲型流感病毒中的 M 剪接,并对其生理作用进行表征。
我们通过比较三种分别来自 1933 年至 2020 年的 H1N1 和 H3N2 病毒株,通过逆转录酶聚合酶链反应(RT-PCR)分析来检查人类 H1N1 和 H3N2 病毒的 M 剪接。我们随机选择了来自 1933 年至 2020 年的人类 H1N1、H2N2 和 H3N2 病毒的 M 序列,并对其系统发育关系进行了分析。接下来,我们通过反向遗传学生成携带 55C/T 变体的突变病毒,确定单核苷酸变异对 M 剪接的影响。为了确认 M2 剪接在 H1N1 和 H3N2 复制中的重要性,我们用剪接抑制剂赫罗比地因处理感染细胞,并通过噬菌斑分析来分析病毒生长情况。为了探索不同水平的 M2 蛋白在致病性中的生理作用,我们用 H1N1 WSN 野生型株、突变 H1N1(55T)和包括 H1N1+ H3wt 和 H1N1+ H3mut 的嵌合病毒对 C57BL/6 小鼠进行攻毒。使用单尾配对 t 检验计算病毒滴度,并用双因素方差分析进行组间多重比较。
M 序列剪接位点分析显示,H3N2 中存在一个进化上保守的单核苷酸变异 C55T,该变异损害了 M2 的表达,并伴有共线性 M1 和 mRNA3 的产生。异常的 M2 剪接是由于剪接位点选择而不是剪接过程的普遍缺陷所致。C55T 取代显著降低了 M2 mRNA 和蛋白水平,无论病毒亚型如何。因此,赫罗比地因处理显著降低了 H1N1 和 H3N2 病毒滴度。然而,较低的 M2 表达仅减弱了 H1N1 病毒的复制和体内致病性。尽管 M2 水平较低,但在嵌合 H1N1 病毒中用 H3N2 M 替换 M2 可恢复这种减弱的表型。
M2 依赖性的差异强调了 M2 在人类甲型流感病毒致病性中的重要性,这导致了亚型特异性的进化。我们的发现为人类病毒适应过程提供了新的见解,并强调了剪接调控作为一种潜在的抗病毒靶点。