Melodia Daniele, Bhadra Abhirup, Lee Kenny, Kuchel Rhiannon, Kundu Dipan, Corrigan Nathaniel, Boyer Cyrille
School of Chemical Engineering, UNSW, Australia, Cluster for Advanced Macromolecular Design (CAMD), Sydney, NSW, 2052, Australia.
School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia.
Small. 2023 Dec;19(50):e2206639. doi: 10.1002/smll.202206639. Epub 2023 Feb 3.
Solid polymer electrolytes (SPEs) offer several advantages compared to their liquid counterparts, and much research has focused on developing SPEs with enhanced mechanical properties while maintaining high ionic conductivities. The recently developed polymerization-induced microphase separation (PIMS) technique offers a straightforward pathway to fabricate bicontinuous nanostructured materials in which the mechanical properties and conductivity can be independently tuned. In this work SPEs with tunable mechanical properties and conductivities are prepared via digital light processing 3D printing, exploiting the PIMS process to achieve nanostructured ion-conducting materials for energy storage applications. A rigid crosslinked poly(isobornyl acrylate-stat-trimethylpropane triacrylate) scaffold provided materials with room temperature shear modulus above 400 MPa, while soft poly(oligoethylene glycol methyl ether acrylate) domains containing the ionic liquid 1-butyl-3-methylimidazolium bis-(trifluoromethyl sulfonyl)imide endowed the material with ionic conductivity up to 1.2 mS cm at 30 °C. These features make the 3D-printed SPE very competitive for applications in all solid energy storage devices, including supercapacitors.
与液体电解质相比,固态聚合物电解质(SPEs)具有诸多优势,许多研究都集中在开发机械性能增强同时保持高离子电导率的SPEs上。最近开发的聚合诱导微相分离(PIMS)技术为制备双连续纳米结构材料提供了一条直接途径,其中机械性能和电导率可以独立调节。在这项工作中,通过数字光处理3D打印制备了具有可调机械性能和电导率的SPEs,利用PIMS工艺实现用于储能应用的纳米结构离子导电材料。刚性交联的聚(异冰片基丙烯酸酯-无规-三羟甲基丙烷三丙烯酸酯)支架为材料提供了高于400 MPa的室温剪切模量,而含有离子液体1-丁基-3-甲基咪唑双(三氟甲基磺酰)亚胺的软质聚(低聚乙二醇甲基醚丙烯酸酯)域赋予材料在30°C时高达1.2 mS cm的离子电导率。这些特性使3D打印的SPE在包括超级电容器在内的所有固体储能器件应用中极具竞争力。