Suppr超能文献

新冠疫情前后可避免急诊就诊的横断面分析。

Cross-sectional analysis of avoidable emergency department visits before and during the COVID-19 pandemic.

机构信息

Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, United States of America.

Center for Quality, Safety, and Value Analytics, Rush University Medical Center, Chicago, IL, United States of America.

出版信息

Am J Emerg Med. 2023 Apr;66:111-117. doi: 10.1016/j.ajem.2023.01.044. Epub 2023 Jan 28.

Abstract

BACKGROUND

COVID-19 had a significant impact on Emergency Departments (ED) with early data suggesting an initial decline in avoidable ED visits. However, the sustained impact over time is unclear. In this study, we analyzed ED discharges over a two-year time period after the COVID-19 pandemic began and compared it with a control time period pre-pandemic to evaluate the difference in ED visit categories, including total, avoidable, and unavoidable visits.

METHODS

This was a retrospective, cross-sectional study assessing the distribution of visits with ED discharges from two hospitals within a health system over a three-year time period (1/1/2019-12/31/2021). Visits were categorized using the expanded NYU-EDA algorithm modified to include COVID-19-related visits. Categories included: Emergent - Not Preventable/Avoidable, Emergent - Preventable/Avoidable, Emergent - Primary Care Treatable, Non-Emergent, Mental Health, Alcohol, Substance Abuse, Injury, and COVID-19. Chi-square testing was conducted to investigate differences within the time period before COVID-19 (1/1/2019-12/31/2019) and both initial (1/1/2020-12/31/2020) and delayed (1/1/2021-12/31/2021) COVID-19 time frames and ED visit categories, as well as post hoc testing using Fisher's exact tests with Bonferroni correction. ANOVA with post hoc Bonferroni testing was used to determine differences based on daily census for each ED visit category.

RESULTS

A total of 228,010 ED discharges (Hospital #1 = 126,858; Hospital #2 = 101,152) met our inclusion criteria over the three-year period. There was a significant difference in the distribution of NYU-EDA categories between the two time periods (pre-COVID-19 versus during COVID-19) for the combined hospitals (p < 0.001), Hospital #1 (p < 0.001), and Hospital #2 (p < 0.001). When examining daily ED discharges, there was a decline in all categories from 2019 to 2020 except for "Emergent - Not Preventable/Avoidable" which remained stable and "Substance Abuse" which increased. From 2020 to 2021, there were no differences in ED avoidable visits. However, there were increases in discharged visits related to "Injuries", "Alcohol", and "Mental health" and a decrease in "COVID-19".

CONCLUSION

Our study identified a sustained decline in discharged avoidable ED visits during the two years following the beginning of the COVID-19 pandemic, which was partially offset by the increase in COVID-19 visits. This work can help inform ED and healthcare systems in resource allocation, hospital staffing, and financial planning during future COVID-19 resurgences and pandemics.

摘要

背景

COVID-19 对急诊部(ED)产生了重大影响,早期数据表明,最初避免去急诊部就诊的人数有所下降。然而,随着时间的推移,其持续影响尚不清楚。在这项研究中,我们分析了 COVID-19 大流行开始后的两年时间内的 ED 出院情况,并将其与大流行前的对照时间进行了比较,以评估 ED 就诊类别(包括总就诊、可避免就诊和不可避免就诊)的差异。

方法

这是一项回顾性、横断面研究,评估了一个医疗系统内的两家医院在三年内的 ED 出院情况(2019 年 1 月 1 日至 2021 年 12 月 31 日)。使用经过修改的扩展 NYU-EDA 算法对就诊进行分类,该算法包括与 COVID-19 相关的就诊。类别包括:紧急-不可预防/避免、紧急-可预防/避免、紧急-初级保健可治疗、非紧急、心理健康、酒精、药物滥用、伤害和 COVID-19。采用卡方检验比较 COVID-19 前(2019 年 1 月 1 日至 12 月 31 日)和 COVID-19 早期(2020 年 1 月 1 日至 12 月 31 日)以及 COVID-19 晚期(2021 年 1 月 1 日至 12 月 31 日)的时间内以及 ED 就诊类别的差异,并使用 Fisher 精确检验进行事后 Bonferroni 校正。采用方差分析和事后 Bonferroni 检验,根据每个 ED 就诊类别的日常入院人数确定差异。

结果

在三年期间,共有 228010 例 ED 出院(医院#1 = 126858;医院#2 = 101152)符合我们的纳入标准。两所医院(p < 0.001)和医院#2(p < 0.001)的 NYU-EDA 类别分布在两个时期(COVID-19 前与 COVID-19 期间)之间存在显著差异(p < 0.001)。当检查每日 ED 出院情况时,除“紧急-不可预防/避免”类别保持稳定外,2019 年至 2020 年期间所有类别的出院人数均有所下降,而“药物滥用”类别的出院人数有所增加。从 2020 年到 2021 年,ED 可避免就诊没有差异。然而,与“伤害”、“酒精”和“心理健康”相关的出院就诊有所增加,而与“COVID-19”相关的就诊有所减少。

结论

我们的研究发现,在 COVID-19 大流行开始后的两年内,可避免的 ED 出院人数持续下降,但 COVID-19 就诊人数的增加部分抵消了这一下降。这项工作可以帮助 ED 和医疗系统在未来 COVID-19 疫情和大流行期间在资源分配、医院人员配备和财务规划方面提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24f3/9883066/23b2a13714b5/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验