Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France; Analytical Chemistry Department, Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka str, Kyiv, 01060, Ukraine.
Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines, UMR 7281, 31, Chemin Joseph Aiguier, CS 70071, 13402, Marseille, CEDEX 09, France.
Biosens Bioelectron. 2023 Apr 1;225:115106. doi: 10.1016/j.bios.2023.115106. Epub 2023 Jan 26.
The hydrogen-based economy will require not only sustainable hydrogen production but also sensitive and cheap hydrogen sensors. Commercially available H sensors are limited by either use of noble metals or elevated temperatures. In nature, hydrogenase enzymes present high affinity and selectivity for hydrogen, while being able to operate in mild conditions. This study aims at evaluating the performance of an electrochemical sensor based on carbon nanomaterials with immobilised hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus for H detection. The effect of various parameters, including the surface chemistry, dispersion degree and amount of deposited carbon nanotubes, enzyme concentration, temperature and pH on the H oxidation are investigated. Although the highest catalytic response is obtained at a temperature around 60 °C, a noticeable current can be obtained at room temperature with a low amount of protein less than 1 μM. An original pulse-strategy to ensure H diffusion to the bioelectrode allows to reach H sensitivity of 4 μA cm per % H and a linear range between 1 and 20%. Sustainable hydrogen was then produced through dark fermentation performed by a synthetic bacterial consortium in an up-flow anaerobic packed-bed bioreactor. Thanks to the outstanding properties of the A. aeolicus hydrogenase, the biosensor was demonstrated to be quite insensitive to CO and HS produced as the main co-products of the bioreactor. Finally, the bioelectrode was used for the in situ measurement of H produced in the bioreactor in steady-state.
基于氢的经济不仅需要可持续的氢气生产,还需要灵敏且廉价的氢气传感器。市售的 H 传感器要么受限于使用贵金属,要么受限于高温。在自然界中,氢化酶能够在温和的条件下工作,同时对氢气具有高亲和力和选择性。本研究旨在评估基于固定化来自嗜热菌 Aquifex aeolicus 的氢化酶的碳纳米材料的电化学传感器用于 H 检测的性能。研究了各种参数对 H 氧化的影响,包括表面化学、分散度和沉积的碳纳米管数量、酶浓度、温度和 pH。尽管在 60°C 左右获得了最高的催化响应,但在室温下使用低于 1 μM 的少量蛋白质也可以获得可观的电流。一种原始的脉冲策略可确保 H 向生物电极扩散,从而使 H 的灵敏度达到 4 μA cm 每 % H,线性范围在 1%到 20%之间。然后通过在升流式厌氧填充床生物反应器中由合成细菌共混物进行暗发酵来生产可持续的氢气。由于 A. aeolicus 氢化酶的卓越性能,该生物传感器被证明对作为生物反应器主要副产物的 CO 和 HS 产生的影响不太敏感。最后,该生物电极用于在稳态下原位测量生物反应器中产生的 H。