The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr. #0412, La Jolla, CA, 92093-0412, USA.
Metab Eng. 2023 Mar;76:179-192. doi: 10.1016/j.ymben.2023.01.012. Epub 2023 Feb 3.
Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.
尽管对高产物浓度的耐受是经济可行的工业化学品生物制造的障碍,但化学耐受机制通常是未知的。为了揭示耐受机制,利用自动化平台使大肠杆菌在 11 种工业化学品(1,2-丙二醇、2,3-丁二醇、戊二酸、己二酸、腐胺、六亚甲基二胺、丁醇、异丁酸、香豆酸、辛酸、己酸)存在的情况下最佳生长,达到耐受浓度比初始毒性水平高 60%-400%。对 89 个种群的 223 个分离株的基因组进行测序、反向工程和交叉化合物耐受分析,以揭示耐受机制。我们表明:1)通过频繁突变膜转运蛋白或细胞壁相关蛋白(如 ProV、KgtP、SapB、NagA、NagC、MreB)、转录和翻译机器(如 RpoA、RpoB、RpoC、RpsA、RpsG、NusA、Rho)、应激信号蛋白(如 RelA、SspA、SpoT、YobF)以及某些化学物质、代谢中的调节剂和酶(如 MetJ、NadR、GudD、PurT)使细胞耐受;2)当化学浓度超过一般阈值时,渗透压应激在耐受中起重要作用,突变基因经常与使膜转运蛋白和细胞壁相关蛋白耐受的基因重叠;3)对特定化学物质的耐受通常会提高对结构相似化合物的耐受,而在不相似的化学物质上可能会出现权衡,4)在许多但不是所有进化后的耐受宿主菌株中插入生产途径时,使用预耐受的起始分离株可以极大地提高化学物质的后续生产,这支持了进化多个平行种群的需要。总的来说,这项研究提供了基于 223 种化学耐受分离株的鉴定突变和生长表型的综合基因型-表型图谱。