Suppr超能文献

在工程化大肠杆菌中,丙酮醇生物合成可在氮限制期间实现NADPH平衡。

Acetol biosynthesis enables NADPH balance during nitrogen limitation in engineered Escherichia coli.

作者信息

Sudarsan Suresh, Demling Philipp, Ozdemir Emre, Ben Ammar Aziz, Mennicken Philip, Buescher Joerg M, Meurer Guido, Ebert Birgitta E, Blank Lars M

机构信息

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark.

Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074, Aachen, Germany.

出版信息

Microb Cell Fact. 2025 Mar 16;24(1):65. doi: 10.1186/s12934-025-02687-z.

Abstract

BACKGROUND

Nutrient limitation strategies are commonly applied in bioprocess development to engineered microorganisms to further maximize the production of the target molecule towards theoretical limits. Biomass formation is often limited under the limitation of key nutrients, and understanding how fluxes in central carbon metabolism are re-routed during the transition from nutrient excess to nutrient-limited condition is vital to target and tailor metabolic engineering strategies. Here, we report the physiology and intracellular flux distribution of an engineered acetol-producing Escherichia coli on glycerol under nitrogen-limited, non-growing production conditions.

RESULTS

Acetol production in the engineered E. coli strain is triggered upon nitrogen depletion. During nitrogen limitation, glycerol uptake decreased, and biomass formation rates ceased. We applied C-flux analysis with 2-C glycerol during exponential growth and nitrogen starvation to elucidate flux re-routing in the central carbon metabolism. The results indicate a metabolically active non-growing state with significant flux re-routing towards acetol biosynthesis and reduced flux through the central carbon metabolism. The acetol biosynthesis pathway is favorable for maintaining the NADPH/NADP balance.

CONCLUSION

The results reported in this study illustrate how the production of a value-added chemical from a waste stream can be connected to the metabolism of the whole-cell biocatalyst, making product formation mandatory for the cell to maintain its NADPH/NADP balance. This has implications for process design and further metabolic engineering of the whole-cell biocatalyst.

摘要

背景

在生物工艺开发中,营养限制策略通常应用于工程微生物,以进一步将目标分子的产量最大化至理论极限。在关键营养物质的限制下,生物量的形成往往受到限制,了解在从营养过剩状态转变为营养限制状态的过程中,中心碳代谢中的通量如何重新分配,对于靶向和定制代谢工程策略至关重要。在此,我们报告了一株工程化的产丙酮醇大肠杆菌在氮限制、非生长生产条件下以甘油为底物时的生理学特性和细胞内通量分布情况。

结果

工程化大肠杆菌菌株中的丙酮醇生产在氮耗尽时被触发。在氮限制期间,甘油摄取减少,生物量形成速率停止。我们在指数生长和氮饥饿期间使用含2-C甘油的C通量分析来阐明中心碳代谢中的通量重新分配。结果表明存在一种代谢活跃的非生长状态,有大量通量重新分配至丙酮醇生物合成,且通过中心碳代谢的通量减少。丙酮醇生物合成途径有利于维持NADPH/NADP平衡。

结论

本研究报告结果表明,如何将从废物流中生产增值化学品与全细胞生物催化剂的代谢联系起来,使产物形成成为细胞维持其NADPH/NADP平衡所必需的。这对全细胞生物催化剂的工艺设计和进一步的代谢工程具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0fc/11910842/a20104fec6ba/12934_2025_2687_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验