Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128, Mainz, Germany.
National Academy of Sciences of Ukraine, Institute of Applied Physics, 58 Petropavlivska St., Sumy, 40000, Ukraine.
Adv Mater. 2023 Apr;35(17):e2208922. doi: 10.1002/adma.202208922. Epub 2023 Mar 18.
Thermally induced skyrmion dynamics, as well as skyrmion pinning effects, in thin films have attracted significant interest. While pinning poses challenges in deterministic skyrmion devices and slows down skyrmion diffusion, for applications in non-conventional computing, both pinning of an appropriate strength and skyrmion diffusion speed are key. Here, periodic field excitations are employed to realize an increase of the skyrmion diffusion by more than two orders of magnitude. Amplifying the excitation, a drastic reduction of the effective skyrmion pinning, is reported, and a transition from pinning-dominated diffusive hopping to dynamics approaching free diffusion is observed. By tailoring the field oscillation frequency and amplitude, a continuous tuning of the effective pinning and skyrmion dynamics is demonstrated, which is a key asset and enabler for non-conventional computing applications. It is found that the periodic excitations additionally allow stabilization of skyrmions at different sizes for field values that are inaccessible in static systems, opening up new approaches to ultrafast skyrmion motion by transiently exciting moving skyrmions.
薄膜中的热诱导斯格明子动力学以及斯格明子钉扎效应引起了人们的极大兴趣。虽然钉扎在确定性斯格明子器件中带来了挑战并减缓了斯格明子扩散,但对于非常规计算应用而言,适当的钉扎强度和斯格明子扩散速度都是关键。在这里,周期性场激励被用来实现斯格明子扩散速度提高两个数量级以上。通过放大激励,报道了有效斯格明子钉扎的急剧降低,并且观察到从钉扎主导的扩散跳跃到接近自由扩散的动力学的转变。通过调整场振荡频率和幅度,证明了有效钉扎和斯格明子动力学的连续调谐,这是非常规计算应用的关键资产和推动者。研究发现,周期性激励还允许在静态系统无法达到的场值下稳定不同尺寸的斯格明子,为通过瞬态激励移动斯格明子来实现超快斯格明子运动开辟了新途径。